Latest data products (.c0f) are already transmition corrected, remove correction by default
|
Before Width: | Height: | Size: 542 KiB After Width: | Height: | Size: 536 KiB |
|
Before Width: | Height: | Size: 698 KiB After Width: | Height: | Size: 694 KiB |
|
Before Width: | Height: | Size: 413 KiB After Width: | Height: | Size: 408 KiB |
|
Before Width: | Height: | Size: 461 KiB After Width: | Height: | Size: 454 KiB |
|
Before Width: | Height: | Size: 578 KiB After Width: | Height: | Size: 574 KiB |
|
Before Width: | Height: | Size: 155 KiB After Width: | Height: | Size: 154 KiB |
|
Before Width: | Height: | Size: 540 KiB After Width: | Height: | Size: 533 KiB |
|
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 70 KiB |
|
Before Width: | Height: | Size: 198 KiB After Width: | Height: | Size: 197 KiB |
|
Before Width: | Height: | Size: 166 KiB After Width: | Height: | Size: 166 KiB |
|
Before Width: | Height: | Size: 172 KiB After Width: | Height: | Size: 172 KiB |
|
Before Width: | Height: | Size: 174 KiB After Width: | Height: | Size: 175 KiB |
|
Before Width: | Height: | Size: 203 KiB After Width: | Height: | Size: 201 KiB |
|
Before Width: | Height: | Size: 737 KiB After Width: | Height: | Size: 731 KiB |
|
Before Width: | Height: | Size: 349 KiB After Width: | Height: | Size: 348 KiB |
|
Before Width: | Height: | Size: 460 KiB After Width: | Height: | Size: 343 KiB |
|
Before Width: | Height: | Size: 1.8 MiB After Width: | Height: | Size: 1.8 MiB |
|
Before Width: | Height: | Size: 168 KiB After Width: | Height: | Size: 168 KiB |
|
Before Width: | Height: | Size: 358 KiB After Width: | Height: | Size: 342 KiB |
|
Before Width: | Height: | Size: 55 KiB After Width: | Height: | Size: 57 KiB |
|
Before Width: | Height: | Size: 292 KiB After Width: | Height: | Size: 276 KiB |
|
Before Width: | Height: | Size: 276 KiB After Width: | Height: | Size: 266 KiB |
|
Before Width: | Height: | Size: 269 KiB After Width: | Height: | Size: 265 KiB |
|
Before Width: | Height: | Size: 330 KiB After Width: | Height: | Size: 309 KiB |
|
Before Width: | Height: | Size: 301 KiB After Width: | Height: | Size: 290 KiB |
|
Before Width: | Height: | Size: 526 KiB After Width: | Height: | Size: 524 KiB |
|
Before Width: | Height: | Size: 561 KiB After Width: | Height: | Size: 643 KiB |
|
Before Width: | Height: | Size: 152 KiB After Width: | Height: | Size: 151 KiB |
|
Before Width: | Height: | Size: 391 KiB After Width: | Height: | Size: 380 KiB |
|
Before Width: | Height: | Size: 64 KiB After Width: | Height: | Size: 62 KiB |
|
Before Width: | Height: | Size: 296 KiB After Width: | Height: | Size: 289 KiB |
|
Before Width: | Height: | Size: 274 KiB After Width: | Height: | Size: 270 KiB |
|
Before Width: | Height: | Size: 274 KiB After Width: | Height: | Size: 269 KiB |
|
Before Width: | Height: | Size: 283 KiB After Width: | Height: | Size: 277 KiB |
|
Before Width: | Height: | Size: 324 KiB After Width: | Height: | Size: 324 KiB |
|
Before Width: | Height: | Size: 494 KiB After Width: | Height: | Size: 512 KiB |
|
Before Width: | Height: | Size: 522 KiB After Width: | Height: | Size: 594 KiB |
|
Before Width: | Height: | Size: 515 KiB |
|
Before Width: | Height: | Size: 503 KiB |
|
Before Width: | Height: | Size: 123 KiB After Width: | Height: | Size: 120 KiB |
|
Before Width: | Height: | Size: 486 KiB After Width: | Height: | Size: 485 KiB |
|
Before Width: | Height: | Size: 496 KiB After Width: | Height: | Size: 495 KiB |
|
Before Width: | Height: | Size: 477 KiB After Width: | Height: | Size: 475 KiB |
|
Before Width: | Height: | Size: 498 KiB After Width: | Height: | Size: 496 KiB |
@@ -128,25 +128,25 @@ def main():
|
||||
# Data binning
|
||||
rebin = True
|
||||
if rebin:
|
||||
pxsize = 0.10
|
||||
px_scale = 'arcsec' #pixel, arcsec or full
|
||||
pxsize = 10
|
||||
px_scale = 'pixel' #pixel, arcsec or full
|
||||
rebin_operation = 'sum' #sum or average
|
||||
# Alignement
|
||||
align_center = 'image' #If None will align image to image center
|
||||
display_data = False
|
||||
# Smoothing
|
||||
smoothing_function = 'combine' #gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||
smoothing_FWHM = 0.20 #If None, no smoothing is done
|
||||
smoothing_FWHM = None #If None, no smoothing is done
|
||||
smoothing_scale = 'arcsec' #pixel or arcsec
|
||||
# Rotation
|
||||
rotate_stokes = True #rotation to North convention can give erroneous results
|
||||
rotate_data = False #rotation to North convention can give erroneous results
|
||||
# Final crop
|
||||
crop = False #Crop to desired ROI
|
||||
final_display = True
|
||||
final_display = False
|
||||
# Polarization map output
|
||||
figname = 'NGC1068_FOC' #target/intrument name
|
||||
figtype = '_combine_FWHM020' #additionnal informations
|
||||
figtype = '_bin10px' #additionnal informations
|
||||
SNRp_cut = 5. #P measurments with SNR>3
|
||||
SNRi_cut = 50. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||
@@ -197,7 +197,7 @@ def main():
|
||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||
# Bibcode : 1995chst.conf...10J
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function,transmitcorr=False)
|
||||
|
||||
## Step 3:
|
||||
# Rotate images to have North up
|
||||
|
||||
@@ -65,9 +65,9 @@ ax = fig.add_subplot(111, projection=wcs)
|
||||
fig.subplots_adjust(right=0.85)
|
||||
cbar_ax = fig.add_axes([0.88, 0.12, 0.01, 0.75])
|
||||
|
||||
#im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0].min()*convert_flux,data_S['I'][data_S['I']>0].max()*convert_flux),origin='lower',cmap='gray',label=r"$I_{STOKES}$ through this pipeline")
|
||||
im0 = ax.imshow(data_S['I']*convert_flux,norm=LogNorm(data_S['I'][data_S['I']>0].min()*convert_flux,data_S['I'][data_S['I']>0].max()*convert_flux),origin='lower',cmap='gray',label=r"$I_{STOKES}$ through this pipeline")
|
||||
#im0 = ax.imshow(data_K['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through Kishimoto's pipeline")
|
||||
im0 = ax.imshow(data_S['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through this pipeline")
|
||||
#im0 = ax.imshow(data_S['P']*100.,vmin=0.,vmax=100.,origin='lower',cmap='inferno',label=r"$P$ through this pipeline")
|
||||
#im0 = ax.imshow(data_K['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through Kishimoto's pipeline")
|
||||
#im0 = ax.imshow(data_S['PA'],vmin=0.,vmax=360.,origin='lower',cmap='inferno',label=r"$\theta_P$ through this pipeline")
|
||||
quiv0 = ax.quiver(data_S['X'],data_S['Y'],data_S['xy_U'],data_S['xy_V'],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='b',alpha=0.75, label="PA through this pipeline")
|
||||
@@ -83,8 +83,8 @@ ax.coords[1].set_axislabel_position('l')
|
||||
ax.coords[1].set_ticklabel_position('l')
|
||||
#ax.axis('equal')
|
||||
|
||||
#cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$P$ [%]")
|
||||
cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
#cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$P$ [%]")
|
||||
#cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$\theta_P$ [°]")
|
||||
plt.rcParams.update({'font.size': 15})
|
||||
ax.legend(loc='upper right')
|
||||
|
||||
@@ -1891,15 +1891,15 @@ class pol_map(object):
|
||||
ax = self.ax
|
||||
if hasattr(self, 'an_int'):
|
||||
self.an_int.remove()
|
||||
#self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.93), xycoords='axes fraction')
|
||||
self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.85), xycoords='axes fraction')
|
||||
self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.93), xycoords='axes fraction')
|
||||
#self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.85), xycoords='axes fraction')
|
||||
if not self.region is None:
|
||||
self.cont = ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
|
||||
fig.canvas.draw_idle()
|
||||
return self.an_int
|
||||
else:
|
||||
#ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.94), xycoords='axes fraction')
|
||||
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.90), xycoords='axes fraction')
|
||||
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.94), xycoords='axes fraction')
|
||||
#ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.90), xycoords='axes fraction')
|
||||
if not self.region is None:
|
||||
ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
|
||||
fig.canvas.draw_idle()
|
||||
|
||||
@@ -1138,7 +1138,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
||||
|
||||
|
||||
def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
FWHM=None, scale='pixel', smoothing='gaussian_after'):
|
||||
FWHM=None, scale='pixel', smoothing='gaussian_after', transmitcorr=False):
|
||||
"""
|
||||
Compute the Stokes parameters I, Q and U for a given data_set
|
||||
----------
|
||||
@@ -1170,6 +1170,11 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
-'gaussian_after' convolve output Stokes I/Q/U with a gaussian of
|
||||
standard deviation stdev = FWHM/(2*sqrt(2*log(2))).
|
||||
Defaults to 'gaussian_after'. Won't be used if FWHM is None.
|
||||
transmitcorr : bool, optional
|
||||
Weither the images should be transmittance corrected for each filter
|
||||
along the line of sight. Latest calibrated data products (.c0f) does
|
||||
not require such correction.
|
||||
Defaults to False.
|
||||
----------
|
||||
Returns:
|
||||
I_stokes : numpy.ndarray
|
||||
@@ -1219,6 +1224,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
transmit2 = np.min([trans2[header['filtnam2'].lower()] for header in headers])
|
||||
transmit3 = np.min([trans3[header['filtnam3'].lower()] for header in headers])
|
||||
transmit4 = np.min([trans4[header['filtnam4'].lower()] for header in headers])
|
||||
if transmitcorr:
|
||||
transmit *= transmit2*transmit3*transmit4
|
||||
pol_eff = np.array([pol_efficiency['pol0'], pol_efficiency['pol60'], pol_efficiency['pol120']])
|
||||
|
||||
|
||||
@@ -7,37 +7,37 @@ from lib.plots import overplot_radio, overplot_pol, align_pol
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
Stokes_UV = fits.open("../data/IC5063_x3nl030/IC5063_FOC_combine_FWHM020.fits")
|
||||
#Stokes_18GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.18GHz.fits")
|
||||
#Stokes_24GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.24GHz.fits")
|
||||
#Stokes_103GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_103GHz.fits")
|
||||
#Stokes_229GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_229GHz.fits")
|
||||
#Stokes_357GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_357GHz.fits")
|
||||
Stokes_18GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.18GHz.fits")
|
||||
Stokes_24GHz = fits.open("../data/IC5063_x3nl030/radio/IC5063.24GHz.fits")
|
||||
Stokes_103GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_103GHz.fits")
|
||||
Stokes_229GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_229GHz.fits")
|
||||
Stokes_357GHz = fits.open("../data/IC5063_x3nl030/radio/I5063_357GHz.fits")
|
||||
#Stokes_S2 = fits.open("../data/IC5063_x3nl030/POLARIZATION_COMPARISON/S2_rot_crop.fits")
|
||||
Stokes_IR = fits.open("../data/IC5063_x3nl030/IR/u2e65g01t_c0f_rot.fits")
|
||||
|
||||
#levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
|
||||
#
|
||||
##levels18GHz = np.array([0.6, 1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_18GHz[0].data.max()
|
||||
#levels18GHz = levelsMorganti*0.28*1e-3
|
||||
#A = overplot_radio(Stokes_UV, Stokes_18GHz)
|
||||
#A.plot(levels=levels18GHz, SNRp_cut=3.0, SNRi_cut=60.0, savename='../plots/IC5063_x3nl030/18GHz_overplot_forced.png')
|
||||
#
|
||||
##levels24GHz = np.array([1.,1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_24GHz[0].data.max()
|
||||
#levels24GHz = levelsMorganti*0.46*1e-3
|
||||
#B = overplot_radio(Stokes_UV, Stokes_24GHz)
|
||||
#B.plot(levels=levels24GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/24GHz_overplot_forced.png')
|
||||
#
|
||||
#levels103GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_103GHz[0].data[Stokes_103GHz[0].data > 0.]))
|
||||
#C = overplot_radio(Stokes_UV, Stokes_103GHz)
|
||||
#C.plot(levels=levels103GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/103GHz_overplot_forced.png')
|
||||
#
|
||||
#levels229GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_229GHz[0].data[Stokes_229GHz[0].data > 0.]))
|
||||
#D = overplot_radio(Stokes_UV, Stokes_229GHz)
|
||||
#D.plot(levels=levels229GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/229GHz_overplot_forced.png')
|
||||
#
|
||||
#levels357GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_357GHz[0].data[Stokes_357GHz[0].data > 0.]))
|
||||
#E = overplot_radio(Stokes_UV, Stokes_357GHz)
|
||||
#E.plot(levels=levels357GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/357GHz_overplot_forced.png')
|
||||
levelsMorganti = np.array([1.,2.,3.,8.,16.,32.,64.,128.])
|
||||
|
||||
#levels18GHz = np.array([0.6, 1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_18GHz[0].data.max()
|
||||
levels18GHz = levelsMorganti*0.28*1e-3
|
||||
A = overplot_radio(Stokes_UV, Stokes_18GHz)
|
||||
A.plot(levels=levels18GHz, SNRp_cut=3.0, SNRi_cut=60.0, savename='../plots/IC5063_x3nl030/18GHz_overplot_forced.png')
|
||||
|
||||
#levels24GHz = np.array([1.,1.5, 3, 6, 12, 24, 48, 96])/100.*Stokes_24GHz[0].data.max()
|
||||
levels24GHz = levelsMorganti*0.46*1e-3
|
||||
B = overplot_radio(Stokes_UV, Stokes_24GHz)
|
||||
B.plot(levels=levels24GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/24GHz_overplot_forced.png')
|
||||
|
||||
levels103GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_103GHz[0].data[Stokes_103GHz[0].data > 0.]))
|
||||
C = overplot_radio(Stokes_UV, Stokes_103GHz)
|
||||
C.plot(levels=levels103GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/103GHz_overplot_forced.png')
|
||||
|
||||
levels229GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_229GHz[0].data[Stokes_229GHz[0].data > 0.]))
|
||||
D = overplot_radio(Stokes_UV, Stokes_229GHz)
|
||||
D.plot(levels=levels229GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/229GHz_overplot_forced.png')
|
||||
|
||||
levels357GHz = np.linspace(1,99,11)/100.*np.max(deepcopy(Stokes_357GHz[0].data[Stokes_357GHz[0].data > 0.]))
|
||||
E = overplot_radio(Stokes_UV, Stokes_357GHz)
|
||||
E.plot(levels=levels357GHz, SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/357GHz_overplot_forced.png')
|
||||
|
||||
#F = overplot_pol(Stokes_UV, Stokes_S2)
|
||||
#F.plot(SNRp_cut=3.0, SNRi_cut=80.0, savename='../plots/IC5063_x3nl030/S2_overplot_forced.png', norm=LogNorm(vmin=5e-20,vmax=5e-18))
|
||||
|
||||