Latest data products (.c0f) are already transmition corrected, remove correction by default
This commit is contained in:
@@ -1138,7 +1138,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
||||
|
||||
|
||||
def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
FWHM=None, scale='pixel', smoothing='gaussian_after'):
|
||||
FWHM=None, scale='pixel', smoothing='gaussian_after', transmitcorr=False):
|
||||
"""
|
||||
Compute the Stokes parameters I, Q and U for a given data_set
|
||||
----------
|
||||
@@ -1170,6 +1170,11 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
-'gaussian_after' convolve output Stokes I/Q/U with a gaussian of
|
||||
standard deviation stdev = FWHM/(2*sqrt(2*log(2))).
|
||||
Defaults to 'gaussian_after'. Won't be used if FWHM is None.
|
||||
transmitcorr : bool, optional
|
||||
Weither the images should be transmittance corrected for each filter
|
||||
along the line of sight. Latest calibrated data products (.c0f) does
|
||||
not require such correction.
|
||||
Defaults to False.
|
||||
----------
|
||||
Returns:
|
||||
I_stokes : numpy.ndarray
|
||||
@@ -1219,7 +1224,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
transmit2 = np.min([trans2[header['filtnam2'].lower()] for header in headers])
|
||||
transmit3 = np.min([trans3[header['filtnam3'].lower()] for header in headers])
|
||||
transmit4 = np.min([trans4[header['filtnam4'].lower()] for header in headers])
|
||||
transmit *= transmit2*transmit3*transmit4
|
||||
if transmitcorr:
|
||||
transmit *= transmit2*transmit3*transmit4
|
||||
pol_eff = np.array([pol_efficiency['pol0'], pol_efficiency['pol60'], pol_efficiency['pol120']])
|
||||
|
||||
#Calculating correction factor
|
||||
|
||||
Reference in New Issue
Block a user