add new images for restless AGN abstract
|
Before Width: | Height: | Size: 134 KiB After Width: | Height: | Size: 134 KiB |
|
Before Width: | Height: | Size: 412 KiB After Width: | Height: | Size: 429 KiB |
|
Before Width: | Height: | Size: 163 KiB After Width: | Height: | Size: 178 KiB |
|
Before Width: | Height: | Size: 138 KiB After Width: | Height: | Size: 156 KiB |
|
Before Width: | Height: | Size: 147 KiB After Width: | Height: | Size: 163 KiB |
|
Before Width: | Height: | Size: 143 KiB After Width: | Height: | Size: 161 KiB |
|
Before Width: | Height: | Size: 142 KiB After Width: | Height: | Size: 165 KiB |
|
Before Width: | Height: | Size: 368 KiB After Width: | Height: | Size: 444 KiB |
|
Before Width: | Height: | Size: 163 KiB After Width: | Height: | Size: 283 KiB |
|
Before Width: | Height: | Size: 818 KiB After Width: | Height: | Size: 993 KiB |
|
Before Width: | Height: | Size: 33 KiB After Width: | Height: | Size: 36 KiB |
|
Before Width: | Height: | Size: 131 KiB After Width: | Height: | Size: 132 KiB |
|
Before Width: | Height: | Size: 385 KiB After Width: | Height: | Size: 369 KiB |
@@ -132,7 +132,7 @@ def main():
|
|||||||
# Error estimation
|
# Error estimation
|
||||||
error_sub_type = 'freedman-diaconis' #sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (15,15))
|
error_sub_type = 'freedman-diaconis' #sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (15,15))
|
||||||
subtract_error = 1.25
|
subtract_error = 1.25
|
||||||
display_error = True
|
display_error = False
|
||||||
# Data binning
|
# Data binning
|
||||||
rebin = True
|
rebin = True
|
||||||
pxsize = 0.10
|
pxsize = 0.10
|
||||||
@@ -154,8 +154,8 @@ def main():
|
|||||||
# Polarization map output
|
# Polarization map output
|
||||||
figname = 'IC5063_FOC' #target/intrument name
|
figname = 'IC5063_FOC' #target/intrument name
|
||||||
figtype = '_c_020' #additionnal informations
|
figtype = '_c_020' #additionnal informations
|
||||||
SNRp_cut = 3. #P measurments with SNR>3
|
SNRp_cut = 1. #P measurments with SNR>3
|
||||||
SNRi_cut = 30. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
SNRi_cut = 10. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||||
# if step_vec = 0 then all vectors are displayed at full length
|
# if step_vec = 0 then all vectors are displayed at full length
|
||||||
|
|
||||||
|
|||||||
@@ -316,7 +316,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
|||||||
if display.lower() in ['intensity']:
|
if display.lower() in ['intensity']:
|
||||||
# If no display selected, show intensity map
|
# If no display selected, show intensity map
|
||||||
display='i'
|
display='i'
|
||||||
vmin, vmax = 3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
vmin, vmax = 1./3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||||
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
|
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
|
||||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
levelsI = np.linspace(vmax*0.01, vmax*0.99, 10)
|
levelsI = np.linspace(vmax*0.01, vmax*0.99, 10)
|
||||||
@@ -327,7 +327,7 @@ def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_c
|
|||||||
# Display polarisation flux
|
# Display polarisation flux
|
||||||
display='pf'
|
display='pf'
|
||||||
pf_mask = (stkI.data > 0.) * (pol.data > 0.)
|
pf_mask = (stkI.data > 0.) * (pol.data > 0.)
|
||||||
vmin, vmax = 3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
vmin, vmax = 1./3.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
|
||||||
im = ax.imshow(stkI.data*convert_flux*pol.data, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
|
im = ax.imshow(stkI.data*convert_flux*pol.data, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
|
||||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10)
|
levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10)
|
||||||
|
|||||||