compare maps with/without polarizer axis error
BIN
plots/NGC1068_x274020/Figure_1.png
Normal file
|
After Width: | Height: | Size: 111 KiB |
BIN
plots/NGC1068_x274020/Figure_2.png
Normal file
|
After Width: | Height: | Size: 342 KiB |
|
After Width: | Height: | Size: 489 KiB |
|
After Width: | Height: | Size: 75 KiB |
|
After Width: | Height: | Size: 393 KiB |
|
After Width: | Height: | Size: 352 KiB |
|
After Width: | Height: | Size: 404 KiB |
|
After Width: | Height: | Size: 475 KiB |
|
After Width: | Height: | Size: 517 KiB |
|
After Width: | Height: | Size: 479 KiB |
|
After Width: | Height: | Size: 689 KiB |
|
After Width: | Height: | Size: 75 KiB |
|
After Width: | Height: | Size: 517 KiB |
|
After Width: | Height: | Size: 463 KiB |
|
After Width: | Height: | Size: 496 KiB |
|
After Width: | Height: | Size: 681 KiB |
|
After Width: | Height: | Size: 726 KiB |
|
After Width: | Height: | Size: 788 KiB |
@@ -113,7 +113,7 @@ def main():
|
|||||||
rotate_data = False #rotation to North convention can give erroneous results
|
rotate_data = False #rotation to North convention can give erroneous results
|
||||||
# Polarization map output
|
# Polarization map output
|
||||||
figname = 'NGC1068_FOC' #target/intrument name
|
figname = 'NGC1068_FOC' #target/intrument name
|
||||||
figtype = '_combine_FWHM020_rot' #additionnal informations
|
figtype = '_combine_FWHM020_rot_withaxiserror' #additionnal informations
|
||||||
SNRp_cut = 15. #P measurments with SNR>3
|
SNRp_cut = 15. #P measurments with SNR>3
|
||||||
SNRi_cut = 80. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
SNRi_cut = 80. #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||||
|
|||||||
@@ -1183,7 +1183,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
|||||||
# s_U_U = np.sqrt(Stokes_cov[2,2])/U_stokes*100.
|
# s_U_U = np.sqrt(Stokes_cov[2,2])/U_stokes*100.
|
||||||
# s_U_axis_U = np.sqrt(s_U2_axis)/U_stokes*100.
|
# s_U_axis_U = np.sqrt(s_U2_axis)/U_stokes*100.
|
||||||
#
|
#
|
||||||
# fig, ax = plt.subplots(3,3)
|
# fig, ax = plt.subplots(3,3,figsize=(15,15))
|
||||||
# im = ax[0,0].imshow(s_I_I, origin='lower')
|
# im = ax[0,0].imshow(s_I_I, origin='lower')
|
||||||
# ax[0,0].set_title(r"$\frac{\sigma_{I}}{I}$")
|
# ax[0,0].set_title(r"$\frac{\sigma_{I}}{I}$")
|
||||||
# fig.colorbar(im, ax=ax[0,0])
|
# fig.colorbar(im, ax=ax[0,0])
|
||||||
@@ -1304,7 +1304,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
|||||||
#Compute the total exposure time so that
|
#Compute the total exposure time so that
|
||||||
#I_stokes*exp_tot = N_tot the total number of events
|
#I_stokes*exp_tot = N_tot the total number of events
|
||||||
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
||||||
print("Total exposure time : {} sec".format(exp_tot))
|
#print("Total exposure time : {} sec".format(exp_tot))
|
||||||
N_obs = I_stokes*exp_tot
|
N_obs = I_stokes*exp_tot
|
||||||
|
|
||||||
#Errors on P, PA supposing Poisson noise
|
#Errors on P, PA supposing Poisson noise
|
||||||
@@ -1313,13 +1313,13 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
|||||||
s_PA_P = np.ones(I_stokes.shape)*fmax
|
s_PA_P = np.ones(I_stokes.shape)*fmax
|
||||||
s_PA_P[mask2] = s_P_P[mask2]/(2.*P[mask2])*180./np.pi
|
s_PA_P[mask2] = s_P_P[mask2]/(2.*P[mask2])*180./np.pi
|
||||||
|
|
||||||
# # Nan handling :
|
# Nan handling :
|
||||||
# P[np.isnan(P)] = 0.
|
P[np.isnan(P)] = 0.
|
||||||
# s_P[np.isnan(s_P)] = fmax
|
s_P[np.isnan(s_P)] = fmax
|
||||||
# s_PA[np.isnan(s_PA)] = fmax
|
s_PA[np.isnan(s_PA)] = fmax
|
||||||
# debiased_P[np.isnan(debiased_P)] = 0.
|
debiased_P[np.isnan(debiased_P)] = 0.
|
||||||
# s_P_P[np.isnan(s_P_P)] = fmax
|
s_P_P[np.isnan(s_P_P)] = fmax
|
||||||
# s_PA_P[np.isnan(s_PA_P)] = fmax
|
s_PA_P[np.isnan(s_PA_P)] = fmax
|
||||||
|
|
||||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||||
|
|
||||||
|
|||||||