fix depreciation warning matplotlib
This commit is contained in:
@@ -40,9 +40,9 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
display_crop = False
|
||||
|
||||
# Background estimation
|
||||
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||
subtract_error = 1.0
|
||||
display_bkg = False
|
||||
error_sub_type = "scott" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||
subtract_error = 2.0
|
||||
display_bkg = True
|
||||
|
||||
# Data binning
|
||||
pxsize = 0.05
|
||||
@@ -66,10 +66,10 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
||||
rotate_North = True
|
||||
|
||||
# Polarization map output
|
||||
P_cut = 0.999 # if >=1.0 cut on the signal-to-noise else cut on the confidence level in Q, U
|
||||
SNRi_cut = 3.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
P_cut = 5 # if >=1.0 cut on the signal-to-noise else cut on the confidence level in Q, U
|
||||
SNRi_cut = 5.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
||||
scale_vec = 2
|
||||
scale_vec = 3
|
||||
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
||||
|
||||
# Pipeline start
|
||||
|
||||
Reference in New Issue
Block a user