Debiased pol_deg now with statistical error

This commit is contained in:
2025-04-15 12:02:34 +02:00
parent 00fa050a95
commit 6d7442169f
2 changed files with 66 additions and 32 deletions

View File

@@ -117,10 +117,9 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"]) figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
# Crop data to remove outside blank margins. # Crop data to remove outside blank margins.
data_array, error_array, headers = proj_red.crop_array( data_array, error_array, data_mask, headers = proj_red.crop_array(
data_array, headers, step=5, null_val=0.0, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder data_array, headers, step=5, null_val=0.0, crop=True, inside=True, display=display_crop, savename=figname, plots_folder=plots_folder
) )
data_mask = np.ones(data_array[0].shape, dtype=bool)
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM. # Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
if deconvolve: if deconvolve:
@@ -217,26 +216,30 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide # FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2 # see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
# Bibcode : 1995chst.conf...10J # Bibcode : 1995chst.conf...10J
I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes = proj_red.compute_Stokes( I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, coeff_stokes, sigma_flux = proj_red.compute_Stokes(
data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=transmitcorr
) )
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg = proj_red.compute_Stokes( I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg, coeff_stokes, sigma_flux_bkg = proj_red.compute_Stokes(
background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False background, background_error, np.array(True).reshape(1, 1), headers, FWHM=None, scale=smoothing_scale, smoothing=smoothing_function, transmitcorr=False
) )
# Step 3: # Step 3:
# Rotate images to have North up # Rotate images to have North up
if rotate_North: if rotate_North:
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes( I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, sigma_flux = proj_red.rotate_Stokes(
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, sigma_flux=sigma_flux, SNRi_cut=None
) )
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes( I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg, sigma_flux_bkg = proj_red.rotate_Stokes(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, sigma_flux=sigma_flux_bkg, SNRi_cut=None
) )
# Compute polarimetric parameters (polarization degree and angle). # Compute polarimetric parameters (polarization degree and angle).
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes) P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg) I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, coeff_stokes=coeff_stokes, sigma_flux=sigma_flux
)
P_bkg, debiased_P_bkg, s_P_bkg, s_P_P_bkg, PA_bkg, s_PA_bkg, s_PA_P_bkg = proj_red.compute_pol(
I_bkg, Q_bkg, U_bkg, S_cov_bkg, header_bkg, coeff_stokes=coeff_stokes, sigma_flux=sigma_flux_bkg
)
# Step 4: # Step 4:
# Save image to FITS. # Save image to FITS.

View File

@@ -224,7 +224,9 @@ def bin_ndarray(ndarray, new_shape, operation="sum"):
return ndarray return ndarray
def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, null_val=None, inside=False, display=False, savename=None, plots_folder=""): def crop_array(
data_array, headers, error_array=None, data_mask=None, step=5, null_val=None, crop=True, inside=False, display=False, savename=None, plots_folder=""
):
""" """
Homogeneously crop an array: all contained images will have the same shape. Homogeneously crop an array: all contained images will have the same shape.
'inside' parameter will decide how much should be cropped. 'inside' parameter will decide how much should be cropped.
@@ -256,6 +258,10 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
If None, will be put to 75% of the mean value of the associated error If None, will be put to 75% of the mean value of the associated error
array. array.
Defaults to None. Defaults to None.
crop : boolean, optional
If True, data_array will be cropped down to contain only relevant data.
If False, this information will be kept in the crop_mask output.
Defaults to True.
inside : boolean, optional inside : boolean, optional
If True, the cropped image will be the maximum rectangle included If True, the cropped image will be the maximum rectangle included
inside the image. If False, the cropped image will be the minimum inside the image. If False, the cropped image will be the minimum
@@ -295,6 +301,9 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
v_array[1] = np.max(vertex[:, 1]).astype(int) v_array[1] = np.max(vertex[:, 1]).astype(int)
v_array[2] = np.min(vertex[:, 2]).astype(int) v_array[2] = np.min(vertex[:, 2]).astype(int)
v_array[3] = np.max(vertex[:, 3]).astype(int) v_array[3] = np.max(vertex[:, 3]).astype(int)
if data_mask is None:
data_mask = np.zeros(data_array[0].shape).astype(bool)
data_mask[v_array[0] : v_array[1], v_array[2] : v_array[3]] = True
new_shape = np.array([v_array[1] - v_array[0], v_array[3] - v_array[2]]) new_shape = np.array([v_array[1] - v_array[0], v_array[3] - v_array[2]])
rectangle = [v_array[2], v_array[0], new_shape[1], new_shape[0], 0.0, "b"] rectangle = [v_array[2], v_array[0], new_shape[1], new_shape[0], 0.0, "b"]
@@ -352,11 +361,11 @@ def crop_array(data_array, headers, error_array=None, data_mask=None, step=5, nu
) )
plt.show() plt.show()
if data_mask is not None: if crop:
crop_mask = data_mask[v_array[0] : v_array[1], v_array[2] : v_array[3]] crop_mask = data_mask[v_array[0] : v_array[1], v_array[2] : v_array[3]]
return crop_array, crop_error_array, crop_mask, crop_headers return crop_array, crop_error_array, crop_mask, crop_headers
else: else:
return crop_array, crop_error_array, crop_headers return data_array, error_array, data_mask, headers
def deconvolve_array(data_array, headers, psf="gaussian", FWHM=1.0, scale="px", shape=None, iterations=20, algo="richardson"): def deconvolve_array(data_array, headers, psf="gaussian", FWHM=1.0, scale="px", shape=None, iterations=20, algo="richardson"):
@@ -1495,10 +1504,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle") header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error") header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
return I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes return I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, coeff_stokes, sigma_flux
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes): def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes, coeff_stokes=None, sigma_flux=None):
""" """
Compute the polarization degree (in %) and angle (in deg) and their Compute the polarization degree (in %) and angle (in deg) and their
respective errors from given Stokes parameters. respective errors from given Stokes parameters.
@@ -1573,26 +1582,42 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
s_P[np.isnan(s_P)] = fmax s_P[np.isnan(s_P)] = fmax
s_PA[np.isnan(s_PA)] = fmax s_PA[np.isnan(s_PA)] = fmax
# Catch expected "OverflowWarning" as wrong pixel have an overflowing error
with warnings.catch_warnings(record=True) as _:
mask2 = P**2 >= s_P**2
debiased_P = np.zeros(I_stokes.shape)
debiased_P[mask2] = np.sqrt(P[mask2] ** 2 - s_P[mask2] ** 2)
if (debiased_P > 1.0).any():
print("WARNING : found {0:d} pixels for which debiased_P > 100%".format(debiased_P[debiased_P > 1.0].size))
# Compute the total exposure time so that # Compute the total exposure time so that
# I_stokes*exp_tot = N_tot the total number of events # I_stokes*exp_tot = N_tot the total number of events
exp_tot = header_stokes["exptime"] N_obs = I_stokes * float(header_stokes["exptime"])
# print("Total exposure time : {} sec".format(exp_tot))
N_obs = I_stokes * exp_tot
# Errors on P, PA supposing Poisson noise # Errors on P, PA supposing Poisson noise
s_P_P = np.ones(I_stokes.shape) * fmax s_P_P = np.ones(I_stokes.shape) * fmax
s_P_P[mask] = np.sqrt(2.0) / np.sqrt(N_obs[mask]) * 100.0
s_PA_P = np.ones(I_stokes.shape) * fmax s_PA_P = np.ones(I_stokes.shape) * fmax
s_PA_P[mask2] = s_P_P[mask2] / (2.0 * P[mask2]) * 180.0 / np.pi maskP = np.logical_and(mask, P > 0.0)
if coeff_stokes is not None and sigma_flux is not None:
s_P_P[maskP] = (
P[maskP]
/ I_stokes[maskP]
* np.sqrt(
np.sum(
[
((coeff_stokes[1, i] * Q_stokes[maskP] + coeff_stokes[2, i] * U_stokes[maskP]) / (I_stokes[maskP] * P[maskP] ** 2) - coeff_stokes[0, i])
** 2
* sigma_flux[i][maskP] ** 2
for i in range(sigma_flux.shape[0])
],
axis=0,
)[0]
)
)
else:
s_P_P[mask] = np.sqrt(2.0 / N_obs[mask])
s_PA_P[maskP] = s_P_P[maskP] / P[maskP] * 90.0 / np.pi
# Catch expected "OverflowWarning" as wrong pixel have an overflowing error
with warnings.catch_warnings(record=True) as _:
mask2 = P**2 >= s_P_P**2
debiased_P = np.zeros(I_stokes.shape)
debiased_P[mask2] = np.sqrt(P[mask2] ** 2 - s_P_P[mask2] ** 2)
if (debiased_P > 1.0).any():
print("WARNING : found {0:d} pixels for which debiased_P > 100%".format(debiased_P[debiased_P > 1.0].size))
# Nan handling : # Nan handling :
P[np.isnan(P)] = 0.0 P[np.isnan(P)] = 0.0
@@ -1605,7 +1630,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes):
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None): def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, sigma_flux=None, SNRi_cut=None):
""" """
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
matrix to rotate Q, U of a given angle in degrees and update header matrix to rotate Q, U of a given angle in degrees and update header
@@ -1698,6 +1723,9 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j] = np.dot(mrot, np.array([new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j]])).T new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j] = np.dot(mrot, np.array([new_I_stokes[i, j], new_Q_stokes[i, j], new_U_stokes[i, j]])).T
new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T)) new_Stokes_cov[:, :, i, j] = np.dot(mrot, np.dot(new_Stokes_cov[:, :, i, j], mrot.T))
if sigma_flux is not None:
new_sigma_flux = sc_rotate(zeropad(sigma_flux, (sigma_flux.shape[0], *shape)), ang, order=1, reshape=False, cval=0.0)
# Update headers to new angle # Update headers to new angle
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]]) mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
@@ -1751,6 +1779,9 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle") new_header_stokes["PA_int"] = (PA_diluted, "Integrated polarization angle")
new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error") new_header_stokes["sPA_int"] = (np.ceil(PA_diluted_err * 10.0) / 10.0, "Integrated polarization angle error")
if sigma_flux is not None:
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes, new_sigma_flux
else:
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_header_stokes