Output several new maps for updated rotation of 3C405

This commit is contained in:
Thibault Barnouin
2021-06-07 11:00:14 +02:00
parent c6f193f0a1
commit 6c40e2de34
7 changed files with 19 additions and 20 deletions

Binary file not shown.

Before

Width:  |  Height:  |  Size: 356 KiB

After

Width:  |  Height:  |  Size: 359 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 221 KiB

After

Width:  |  Height:  |  Size: 224 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 198 KiB

After

Width:  |  Height:  |  Size: 200 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 347 KiB

After

Width:  |  Height:  |  Size: 346 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 256 KiB

After

Width:  |  Height:  |  Size: 259 KiB

View File

@@ -29,10 +29,9 @@ def main():
# 'x14w0104t_c1f.fits','x14w0105p_c1f.fits','x14w0106t_c1f.fits'] # 'x14w0104t_c1f.fits','x14w0105p_c1f.fits','x14w0106t_c1f.fits']
# globals()['plots_folder'] = "../plots/NGC1068_x14w010/" # globals()['plots_folder'] = "../plots/NGC1068_x14w010/"
# globals()['data_folder'] = "../data/3C405_x136060/" globals()['data_folder'] = "../data/3C405_x136060/"
# infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits'] infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
# infiles = ['x1360601t_c1f.fits','x1360602t_c1f.fits','x1360603t_c1f.fits'] globals()['plots_folder'] = "../plots/3C405_x136060/"
# globals()['plots_folder'] = "../plots/3C405_x136060/"
# globals()['data_folder'] = "../data/CygnusA_x43w0/" # globals()['data_folder'] = "../data/CygnusA_x43w0/"
# infiles = ['x43w0101r_c0f.fits', 'x43w0102r_c0f.fits', 'x43w0103r_c0f.fits', # infiles = ['x43w0101r_c0f.fits', 'x43w0102r_c0f.fits', 'x43w0103r_c0f.fits',
@@ -46,13 +45,13 @@ def main():
# infiles = ['x3mc0101m_c0f.fits','x3mc0102m_c0f.fits','x3mc0103m_c0f.fits'] # infiles = ['x3mc0101m_c0f.fits','x3mc0102m_c0f.fits','x3mc0103m_c0f.fits']
# globals()['plots_folder'] = "../plots/3C109_x3mc010/" # globals()['plots_folder'] = "../plots/3C109_x3mc010/"
globals()['data_folder'] = "../data/MKN463_x2rp030/" # globals()['data_folder'] = "../data/MKN463_x2rp030/"
infiles = ['x2rp0201t_c0f.fits', 'x2rp0203t_c0f.fits', 'x2rp0205t_c0f.fits', # infiles = ['x2rp0201t_c0f.fits', 'x2rp0202t_c0f.fits', 'x2rp0203t_c0f.fits',
'x2rp0207t_c0f.fits', 'x2rp0302t_c0f.fits', 'x2rp0304t_c0f.fits', # 'x2rp0204t_c0f.fits', 'x2rp0205t_c0f.fits', 'x2rp0206t_c0f.fits',
'x2rp0306t_c0f.fits', 'x2rp0202t_c0f.fits', 'x2rp0204t_c0f.fits', # 'x2rp0207t_c0f.fits', 'x2rp0301t_c0f.fits', 'x2rp0302t_c0f.fits',
'x2rp0206t_c0f.fits', 'x2rp0301t_c0f.fits', 'x2rp0303t_c0f.fits', # 'x2rp0303t_c0f.fits', 'x2rp0304t_c0f.fits', 'x2rp0305t_c0f.fits',
'x2rp0305t_c0f.fits', 'x2rp0307t_c0f.fits'] # 'x2rp0306t_c0f.fits', 'x2rp0307t_c0f.fits']
globals()['plots_folder'] = "../plots/MKN463_x2rp030/" # globals()['plots_folder'] = "../plots/MKN463_x2rp030/"
# globals()['data_folder'] = "../data/PG1630+377_x39510/" # globals()['data_folder'] = "../data/PG1630+377_x39510/"
# infiles = ['x3990201m_c0f.fits', 'x3990205m_c0f.fits', 'x3995101r_c0f.fits', # infiles = ['x3990201m_c0f.fits', 'x3990205m_c0f.fits', 'x3995101r_c0f.fits',
@@ -89,12 +88,12 @@ def main():
psf_shape=(9,9) psf_shape=(9,9)
iterations = 10 iterations = 10
# Error estimation # Error estimation
error_sub_shape = (100,100) error_sub_shape = (150,150)
display_error = False display_error = False
# Data binning # Data binning
rebin = True rebin = True
if rebin: if rebin:
pxsize = 0.10 pxsize = 0.50
px_scale = 'arcsec' #pixel or arcsec px_scale = 'arcsec' #pixel or arcsec
rebin_operation = 'sum' #sum or average rebin_operation = 'sum' #sum or average
# Alignement # Alignement
@@ -102,13 +101,13 @@ def main():
display_data = False display_data = False
# Smoothing # Smoothing
smoothing_function = 'combine' #gaussian_after, gaussian or combine smoothing_function = 'combine' #gaussian_after, gaussian or combine
smoothing_FWHM = 0.20 #If None, no smoothing is done smoothing_FWHM = 1.00 #If None, no smoothing is done
smoothing_scale = 'arcsec' #pixel or arcsec smoothing_scale = 'arcsec' #pixel or arcsec
# Rotation # Rotation
rotate = True #rotation to North convention can give erroneous results rotate = True #rotation to North convention can give erroneous results
# Polarization map output # Polarization map output
figname = 'MKN463_FOC' #target/intrument name figname = '3C405_FOC' #target/intrument name
figtype = '_combine_FWHM020_rot' #additionnal informations figtype = '_combine_FWHM100_rot' #additionnal informations
SNRp_cut = 3 #P measurments with SNR>3 SNRp_cut = 3 #P measurments with SNR>3
SNRi_cut = 30 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%. SNRi_cut = 30 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted

View File

@@ -1132,15 +1132,15 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang):
#Rotate original images using scipy.ndimage.rotate #Rotate original images using scipy.ndimage.rotate
new_I_stokes = sc_rotate(new_I_stokes, ang, reshape=False, new_I_stokes = sc_rotate(new_I_stokes, ang, reshape=False,
cval=np.sqrt(new_Stokes_cov[0,0][0,0])) cval=0.10*np.sqrt(new_Stokes_cov[0,0][0,0]))
new_Q_stokes = sc_rotate(new_Q_stokes, ang, reshape=False, new_Q_stokes = sc_rotate(new_Q_stokes, ang, reshape=False,
cval=np.sqrt(new_Stokes_cov[1,1][0,0])) cval=0.10*np.sqrt(new_Stokes_cov[1,1][0,0]))
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False, new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False,
cval=np.sqrt(new_Stokes_cov[2,2][0,0])) cval=0.10*np.sqrt(new_Stokes_cov[2,2][0,0]))
for i in range(3): for i in range(3):
for j in range(3): for j in range(3):
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang, reshape=False, new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang, reshape=False,
cval=new_Stokes_cov[i,j].mean()) cval=0.10*new_Stokes_cov[i,j].mean())
#Update headers to new angle #Update headers to new angle
new_headers = [] new_headers = []