Output several new maps for updated rotation of 3C405
|
Before Width: | Height: | Size: 356 KiB After Width: | Height: | Size: 359 KiB |
|
Before Width: | Height: | Size: 221 KiB After Width: | Height: | Size: 224 KiB |
|
Before Width: | Height: | Size: 198 KiB After Width: | Height: | Size: 200 KiB |
|
Before Width: | Height: | Size: 347 KiB After Width: | Height: | Size: 346 KiB |
|
Before Width: | Height: | Size: 256 KiB After Width: | Height: | Size: 259 KiB |
@@ -29,10 +29,9 @@ def main():
|
|||||||
# 'x14w0104t_c1f.fits','x14w0105p_c1f.fits','x14w0106t_c1f.fits']
|
# 'x14w0104t_c1f.fits','x14w0105p_c1f.fits','x14w0106t_c1f.fits']
|
||||||
# globals()['plots_folder'] = "../plots/NGC1068_x14w010/"
|
# globals()['plots_folder'] = "../plots/NGC1068_x14w010/"
|
||||||
|
|
||||||
# globals()['data_folder'] = "../data/3C405_x136060/"
|
globals()['data_folder'] = "../data/3C405_x136060/"
|
||||||
# infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
|
infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
|
||||||
# infiles = ['x1360601t_c1f.fits','x1360602t_c1f.fits','x1360603t_c1f.fits']
|
globals()['plots_folder'] = "../plots/3C405_x136060/"
|
||||||
# globals()['plots_folder'] = "../plots/3C405_x136060/"
|
|
||||||
|
|
||||||
# globals()['data_folder'] = "../data/CygnusA_x43w0/"
|
# globals()['data_folder'] = "../data/CygnusA_x43w0/"
|
||||||
# infiles = ['x43w0101r_c0f.fits', 'x43w0102r_c0f.fits', 'x43w0103r_c0f.fits',
|
# infiles = ['x43w0101r_c0f.fits', 'x43w0102r_c0f.fits', 'x43w0103r_c0f.fits',
|
||||||
@@ -46,13 +45,13 @@ def main():
|
|||||||
# infiles = ['x3mc0101m_c0f.fits','x3mc0102m_c0f.fits','x3mc0103m_c0f.fits']
|
# infiles = ['x3mc0101m_c0f.fits','x3mc0102m_c0f.fits','x3mc0103m_c0f.fits']
|
||||||
# globals()['plots_folder'] = "../plots/3C109_x3mc010/"
|
# globals()['plots_folder'] = "../plots/3C109_x3mc010/"
|
||||||
|
|
||||||
globals()['data_folder'] = "../data/MKN463_x2rp030/"
|
# globals()['data_folder'] = "../data/MKN463_x2rp030/"
|
||||||
infiles = ['x2rp0201t_c0f.fits', 'x2rp0203t_c0f.fits', 'x2rp0205t_c0f.fits',
|
# infiles = ['x2rp0201t_c0f.fits', 'x2rp0202t_c0f.fits', 'x2rp0203t_c0f.fits',
|
||||||
'x2rp0207t_c0f.fits', 'x2rp0302t_c0f.fits', 'x2rp0304t_c0f.fits',
|
# 'x2rp0204t_c0f.fits', 'x2rp0205t_c0f.fits', 'x2rp0206t_c0f.fits',
|
||||||
'x2rp0306t_c0f.fits', 'x2rp0202t_c0f.fits', 'x2rp0204t_c0f.fits',
|
# 'x2rp0207t_c0f.fits', 'x2rp0301t_c0f.fits', 'x2rp0302t_c0f.fits',
|
||||||
'x2rp0206t_c0f.fits', 'x2rp0301t_c0f.fits', 'x2rp0303t_c0f.fits',
|
# 'x2rp0303t_c0f.fits', 'x2rp0304t_c0f.fits', 'x2rp0305t_c0f.fits',
|
||||||
'x2rp0305t_c0f.fits', 'x2rp0307t_c0f.fits']
|
# 'x2rp0306t_c0f.fits', 'x2rp0307t_c0f.fits']
|
||||||
globals()['plots_folder'] = "../plots/MKN463_x2rp030/"
|
# globals()['plots_folder'] = "../plots/MKN463_x2rp030/"
|
||||||
|
|
||||||
# globals()['data_folder'] = "../data/PG1630+377_x39510/"
|
# globals()['data_folder'] = "../data/PG1630+377_x39510/"
|
||||||
# infiles = ['x3990201m_c0f.fits', 'x3990205m_c0f.fits', 'x3995101r_c0f.fits',
|
# infiles = ['x3990201m_c0f.fits', 'x3990205m_c0f.fits', 'x3995101r_c0f.fits',
|
||||||
@@ -89,12 +88,12 @@ def main():
|
|||||||
psf_shape=(9,9)
|
psf_shape=(9,9)
|
||||||
iterations = 10
|
iterations = 10
|
||||||
# Error estimation
|
# Error estimation
|
||||||
error_sub_shape = (100,100)
|
error_sub_shape = (150,150)
|
||||||
display_error = False
|
display_error = False
|
||||||
# Data binning
|
# Data binning
|
||||||
rebin = True
|
rebin = True
|
||||||
if rebin:
|
if rebin:
|
||||||
pxsize = 0.10
|
pxsize = 0.50
|
||||||
px_scale = 'arcsec' #pixel or arcsec
|
px_scale = 'arcsec' #pixel or arcsec
|
||||||
rebin_operation = 'sum' #sum or average
|
rebin_operation = 'sum' #sum or average
|
||||||
# Alignement
|
# Alignement
|
||||||
@@ -102,13 +101,13 @@ def main():
|
|||||||
display_data = False
|
display_data = False
|
||||||
# Smoothing
|
# Smoothing
|
||||||
smoothing_function = 'combine' #gaussian_after, gaussian or combine
|
smoothing_function = 'combine' #gaussian_after, gaussian or combine
|
||||||
smoothing_FWHM = 0.20 #If None, no smoothing is done
|
smoothing_FWHM = 1.00 #If None, no smoothing is done
|
||||||
smoothing_scale = 'arcsec' #pixel or arcsec
|
smoothing_scale = 'arcsec' #pixel or arcsec
|
||||||
# Rotation
|
# Rotation
|
||||||
rotate = True #rotation to North convention can give erroneous results
|
rotate = True #rotation to North convention can give erroneous results
|
||||||
# Polarization map output
|
# Polarization map output
|
||||||
figname = 'MKN463_FOC' #target/intrument name
|
figname = '3C405_FOC' #target/intrument name
|
||||||
figtype = '_combine_FWHM020_rot' #additionnal informations
|
figtype = '_combine_FWHM100_rot' #additionnal informations
|
||||||
SNRp_cut = 3 #P measurments with SNR>3
|
SNRp_cut = 3 #P measurments with SNR>3
|
||||||
SNRi_cut = 30 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
SNRi_cut = 30 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||||
|
|||||||
@@ -1132,15 +1132,15 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang):
|
|||||||
|
|
||||||
#Rotate original images using scipy.ndimage.rotate
|
#Rotate original images using scipy.ndimage.rotate
|
||||||
new_I_stokes = sc_rotate(new_I_stokes, ang, reshape=False,
|
new_I_stokes = sc_rotate(new_I_stokes, ang, reshape=False,
|
||||||
cval=np.sqrt(new_Stokes_cov[0,0][0,0]))
|
cval=0.10*np.sqrt(new_Stokes_cov[0,0][0,0]))
|
||||||
new_Q_stokes = sc_rotate(new_Q_stokes, ang, reshape=False,
|
new_Q_stokes = sc_rotate(new_Q_stokes, ang, reshape=False,
|
||||||
cval=np.sqrt(new_Stokes_cov[1,1][0,0]))
|
cval=0.10*np.sqrt(new_Stokes_cov[1,1][0,0]))
|
||||||
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False,
|
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False,
|
||||||
cval=np.sqrt(new_Stokes_cov[2,2][0,0]))
|
cval=0.10*np.sqrt(new_Stokes_cov[2,2][0,0]))
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang, reshape=False,
|
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang, reshape=False,
|
||||||
cval=new_Stokes_cov[i,j].mean())
|
cval=0.10*new_Stokes_cov[i,j].mean())
|
||||||
|
|
||||||
#Update headers to new angle
|
#Update headers to new angle
|
||||||
new_headers = []
|
new_headers = []
|
||||||
|
|||||||