From 69b3937e9c182f3049fe975785fccc97bc617a15 Mon Sep 17 00:00:00 2001 From: sugar_jo <140659696+sugar-joh@users.noreply.github.com> Date: Thu, 27 Jun 2024 20:46:42 +0800 Subject: [PATCH] Update reduction.py --- package/lib/reduction.py | 32 ++++++++++++++++++++++++++++++++ 1 file changed, 32 insertions(+) diff --git a/package/lib/reduction.py b/package/lib/reduction.py index 7708aad..58aa0bb 100755 --- a/package/lib/reduction.py +++ b/package/lib/reduction.py @@ -1588,3 +1588,35 @@ def rotate_data(data_array, error_array, data_mask, headers, ang): globals()['theta'] = globals()["theta"] - alpha return new_data_array, new_error_array, new_data_mask, new_headers + +def adaptive_binning(I_stokes, Q_stokes, U_stokes, Stokes_cov): + shape = I_stokes.shape + + assert shape[0] == shape[1], "Only square images are supported" + assert shape[0] % 2 == 0, "Image size must be a power of 2" + + n = int(np.log2(shape[0])) + bin_map = np.zeros(shape) + bin_num = 0 + + for level in range(n): + grid_size = 2**level + temp_I = I_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) + temp_Q = Q_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) + temp_U = U_stokes.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) + temp_cov = Stokes_cov.reshape(3, 3, int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(3).sum(4) + temp_bin_map = bin_map.reshape(int(shape[0]/grid_size), grid_size, int(shape[1]/grid_size), grid_size).sum(1).sum(2) + + temp_P = (temp_Q**2 + temp_U**2)**0.5 / temp_I + temp_P_err = (1 / temp_I) * np.sqrt((temp_Q**2 * temp_cov[1,1,:,:] + temp_U**2 * temp_cov[2,2,:,:] + 2. * temp_Q * temp_U * temp_cov[1,2,:,:]) / (temp_Q**2 + temp_U**2) + \ + ((temp_Q / temp_I)**2 + (temp_U / temp_I)**2) * temp_cov[0,0,:,:] - \ + 2. * (temp_Q / temp_I) * temp_cov[0,1,:,:] - \ + 2. * (temp_U / temp_I) * temp_cov[0,2,:,:]) + + for i in range(int(shape[0]/grid_size)): + for j in range(int(shape[1]/grid_size)): + if (temp_P[i,j] / temp_P_err[i,j] > 3) and (temp_bin_map[i,j] == 0): # the default criterion is 3 sigma in P + bin_num += 1 + bin_map[i*grid_size:(i+1)*grid_size,j*grid_size:(j+1)*grid_size] = bin_num + + return bin_map, bin_num \ No newline at end of file