Add error propagation from uncertainties on the polarizer axis
|
Before Width: | Height: | Size: 442 KiB After Width: | Height: | Size: 423 KiB |
|
Before Width: | Height: | Size: 73 KiB After Width: | Height: | Size: 73 KiB |
|
Before Width: | Height: | Size: 300 KiB After Width: | Height: | Size: 217 KiB |
|
Before Width: | Height: | Size: 333 KiB After Width: | Height: | Size: 184 KiB |
|
After Width: | Height: | Size: 396 KiB |
|
Before Width: | Height: | Size: 459 KiB After Width: | Height: | Size: 450 KiB |
|
Before Width: | Height: | Size: 443 KiB After Width: | Height: | Size: 283 KiB |
|
Before Width: | Height: | Size: 452 KiB |
|
Before Width: | Height: | Size: 61 KiB |
|
Before Width: | Height: | Size: 362 KiB |
|
Before Width: | Height: | Size: 350 KiB |
|
Before Width: | Height: | Size: 458 KiB |
|
Before Width: | Height: | Size: 462 KiB |
|
Before Width: | Height: | Size: 512 KiB |
|
Before Width: | Height: | Size: 73 KiB |
|
Before Width: | Height: | Size: 385 KiB |
|
Before Width: | Height: | Size: 412 KiB |
|
Before Width: | Height: | Size: 530 KiB |
|
Before Width: | Height: | Size: 512 KiB |
@@ -109,9 +109,9 @@ def main():
|
|||||||
rotate_data = False #rotation to North convention can give erroneous results
|
rotate_data = False #rotation to North convention can give erroneous results
|
||||||
# Polarization map output
|
# Polarization map output
|
||||||
figname = 'NGC1068_FOC' #target/intrument name
|
figname = 'NGC1068_FOC' #target/intrument name
|
||||||
figtype = '_3_combine_FWHM020' #additionnal informations
|
figtype = '_2_combine_FWHM020_rot' #additionnal informations
|
||||||
SNRp_cut = 30 #P measurments with SNR>3
|
SNRp_cut = 20 #P measurments with SNR>3
|
||||||
SNRi_cut = 300 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
SNRi_cut = 130 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||||
|
|
||||||
##### Pipeline start
|
##### Pipeline start
|
||||||
@@ -156,7 +156,7 @@ def main():
|
|||||||
alpha = ref_header['orientat']
|
alpha = ref_header['orientat']
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
||||||
[np.sin(-alpha), np.cos(-alpha)]])
|
[np.sin(-alpha), np.cos(-alpha)]])
|
||||||
rectangle[0:2] = np.dot(mrot, np.asarray(rectangle[0:2]))
|
rectangle[0:2] = np.dot(mrot, np.asarray(rectangle[0:2]))+np.array(data_array.shape[1:])/2
|
||||||
rectangle[4] = alpha
|
rectangle[4] = alpha
|
||||||
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers, -ref_header['orientat'])
|
data_array, error_array, data_mask, headers = proj_red.rotate_data(data_array, error_array, data_mask, headers, -ref_header['orientat'])
|
||||||
for data in data_array:
|
for data in data_array:
|
||||||
@@ -172,7 +172,7 @@ def main():
|
|||||||
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
# FWHM of FOC have been estimated at about 0.03" across 1500-5000 Angstrom band, which is about 2 detector pixels wide
|
||||||
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
# see Jedrzejewski, R.; Nota, A.; Hack, W. J., A Comparison Between FOC and WFPC2
|
||||||
# Bibcode : 1995chst.conf...10J
|
# Bibcode : 1995chst.conf...10J
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux = proj_red.compute_Stokes(data_array, error_array, data_mask, headers, FWHM=smoothing_FWHM, scale=smoothing_scale, smoothing=smoothing_function)
|
||||||
|
|
||||||
## Step 3:
|
## Step 3:
|
||||||
# Rotate images to have North up
|
# Rotate images to have North up
|
||||||
@@ -181,11 +181,11 @@ def main():
|
|||||||
alpha = ref_header['orientat']
|
alpha = ref_header['orientat']
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
||||||
[np.sin(-alpha), np.cos(-alpha)]])
|
[np.sin(-alpha), np.cos(-alpha)]])
|
||||||
rectangle[0:2] = np.dot(mrot, np.asarray(rectangle[0:2]))
|
rectangle[0:2] = np.dot(mrot, np.asarray(rectangle[0:2]))+np.array(data_array.shape[1:])/2
|
||||||
rectangle[4] = alpha
|
rectangle[4] = alpha
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, -ref_header['orientat'], SNRi_cut=None)
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, data_mask, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, data_mask, headers, -ref_header['orientat'], SNRi_cut=None)
|
||||||
# Compute polarimetric parameters (polarization degree and angle).
|
# Compute polarimetric parameters (polarization degree and angle).
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers)
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, headers)
|
||||||
|
|
||||||
## Step 4:
|
## Step 4:
|
||||||
# Save image to FITS.
|
# Save image to FITS.
|
||||||
@@ -193,11 +193,12 @@ def main():
|
|||||||
|
|
||||||
## Step 5:
|
## Step 5:
|
||||||
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
# Plot polarization map (Background is either total Flux, Polarization degree or Polarization degree error).
|
||||||
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display=None)
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype, plots_folder=plots_folder, display=None)
|
||||||
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P", plots_folder=plots_folder, display='Pol_deg')
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_flux", plots_folder=plots_folder, display='Pol_Flux')
|
||||||
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_err", plots_folder=plots_folder, display='Pol_deg_err')
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P", plots_folder=plots_folder, display='Pol_deg')
|
||||||
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRi", plots_folder=plots_folder, display='SNRi')
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_P_err", plots_folder=plots_folder, display='Pol_deg_err')
|
||||||
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRp", plots_folder=plots_folder, display='SNRp')
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRi", plots_folder=plots_folder, display='SNRi')
|
||||||
|
proj_plots.polarization_map(copy.deepcopy(Stokes_test), rectangle=None, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, step_vec=step_vec, savename=figname+figtype+"_SNRp", plots_folder=plots_folder, display='SNRp')
|
||||||
|
|
||||||
return 0
|
return 0
|
||||||
|
|
||||||
|
|||||||
@@ -17,10 +17,29 @@ from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar, AnchoredDi
|
|||||||
from astropy.wcs import WCS
|
from astropy.wcs import WCS
|
||||||
|
|
||||||
|
|
||||||
|
def princ_angle(ang):
|
||||||
|
"""
|
||||||
|
Return the principal angle in the 0-180° quadrant.
|
||||||
|
"""
|
||||||
|
while ang < 0.:
|
||||||
|
ang += 180.
|
||||||
|
while ang > 180.:
|
||||||
|
ang -= 180.
|
||||||
|
return ang
|
||||||
|
|
||||||
|
|
||||||
def sci_not(v,err,rnd=1):
|
def sci_not(v,err,rnd=1):
|
||||||
|
"""
|
||||||
|
Return the scientifque error notation as a string.
|
||||||
|
"""
|
||||||
power = - int(('%E' % v)[-3:])+1
|
power = - int(('%E' % v)[-3:])+1
|
||||||
return r"({0} $\pm$ {1})e{2}".format(
|
output = r"({0}".format(round(v*10**power,rnd))
|
||||||
round(v*10**power,rnd),round(err*10**power,rnd),-power)
|
if type(err) == list:
|
||||||
|
for error in err:
|
||||||
|
output += r" $\pm$ {0}".format(round(error*10**power,rnd))
|
||||||
|
else:
|
||||||
|
output += r" $\pm$ {0}".format(round(err*10**power,rnd))
|
||||||
|
return output+r")e{0}".format(-power)
|
||||||
|
|
||||||
|
|
||||||
def plot_obs(data_array, headers, shape=None, vmin=0., vmax=6., rectangle=None,
|
def plot_obs(data_array, headers, shape=None, vmin=0., vmax=6., rectangle=None,
|
||||||
@@ -240,6 +259,14 @@ def polarization_map(Stokes, rectangle=None, SNRp_cut=3., SNRi_cut=30., step_vec
|
|||||||
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
levelsI = np.linspace(SNRi_cut, np.max(SNRi[SNRi > 0.]), 10)
|
levelsI = np.linspace(SNRi_cut, np.max(SNRi[SNRi > 0.]), 10)
|
||||||
cont = ax.contour(SNRi, extent=[-SNRi.shape[1]/2.,SNRi.shape[1]/2.,-SNRi.shape[0]/2.,SNRi.shape[0]/2.], levels=levelsI, colors='grey', linewidths=0.5)
|
cont = ax.contour(SNRi, extent=[-SNRi.shape[1]/2.,SNRi.shape[1]/2.,-SNRi.shape[0]/2.,SNRi.shape[0]/2.], levels=levelsI, colors='grey', linewidths=0.5)
|
||||||
|
elif display.lower() in ['pol_flux']:
|
||||||
|
# Display polarisation flux
|
||||||
|
pf_mask = (stkI.data > 0.) * (pol.data > 0.)
|
||||||
|
vmin, vmax = 0., np.max(stkI.data[pf_mask]*convert_flux*pol.data[pf_mask]/100.)
|
||||||
|
im = ax.imshow(stkI.data*convert_flux*pol.data/100.,extent=[-stkI.data.shape[1]/2.,stkI.data.shape[1]/2.,-stkI.data.shape[0]/2.,stkI.data.shape[0]/2.], vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno', alpha=1.)
|
||||||
|
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
|
levelsI = np.linspace(SNRi_cut, np.max(SNRi[SNRi > 0.]), 10)
|
||||||
|
cont = ax.contour(SNRi, extent=[-SNRi.shape[1]/2.,SNRi.shape[1]/2.,-SNRi.shape[0]/2.,SNRi.shape[0]/2.], levels=levelsI, colors='grey', linewidths=0.5)
|
||||||
elif display.lower() in ['p','pol','pol_deg']:
|
elif display.lower() in ['p','pol','pol_deg']:
|
||||||
# Display polarization degree map
|
# Display polarization degree map
|
||||||
vmin, vmax = 0., 100.
|
vmin, vmax = 0., 100.
|
||||||
@@ -290,6 +317,7 @@ def polarization_map(Stokes, rectangle=None, SNRp_cut=3., SNRi_cut=30., step_vec
|
|||||||
# Display instrument FOV
|
# Display instrument FOV
|
||||||
if not(rectangle is None):
|
if not(rectangle is None):
|
||||||
x, y, width, height, angle, color = rectangle
|
x, y, width, height, angle, color = rectangle
|
||||||
|
x, y = np.array([x, y])- np.array(stkI.data.shape)/2.
|
||||||
ax.add_patch(Rectangle((x, y), width, height, angle=angle,
|
ax.add_patch(Rectangle((x, y), width, height, angle=angle,
|
||||||
edgecolor=color, fill=False))
|
edgecolor=color, fill=False))
|
||||||
|
|
||||||
@@ -308,7 +336,7 @@ def polarization_map(Stokes, rectangle=None, SNRp_cut=3., SNRi_cut=30., step_vec
|
|||||||
P_int = np.sqrt(Q_int**2+U_int**2)/I_int*100.
|
P_int = np.sqrt(Q_int**2+U_int**2)/I_int*100.
|
||||||
P_int_err = (100./I_int)*np.sqrt((Q_int**2*Q_int_err**2 + U_int**2*U_int_err**2 + 2.*Q_int*U_int*QU_int_err)/(Q_int**2 + U_int**2) + ((Q_int/I_int)**2 + (U_int/I_int)**2)*I_int_err**2 - 2.*(Q_int/I_int)*IQ_int_err - 2.*(U_int/I_int)*IU_int_err)
|
P_int_err = (100./I_int)*np.sqrt((Q_int**2*Q_int_err**2 + U_int**2*U_int_err**2 + 2.*Q_int*U_int*QU_int_err)/(Q_int**2 + U_int**2) + ((Q_int/I_int)**2 + (U_int/I_int)**2)*I_int_err**2 - 2.*(Q_int/I_int)*IQ_int_err - 2.*(U_int/I_int)*IU_int_err)
|
||||||
|
|
||||||
PA_int = (90./np.pi)*np.arctan2(U_int,Q_int)+90.*2
|
PA_int = princ_angle((90./np.pi)*np.arctan2(U_int,Q_int))
|
||||||
PA_int_err = (90./(np.pi*(Q_int**2 + U_int**2)))*np.sqrt(U_int**2*Q_int_err**2 + Q_int**2*U_int_err**2 - 2.*Q_int*U_int*QU_int_err)
|
PA_int_err = (90./(np.pi*(Q_int**2 + U_int**2)))*np.sqrt(U_int**2*Q_int_err**2 + Q_int**2*U_int_err**2 - 2.*Q_int*U_int*QU_int_err)
|
||||||
|
|
||||||
# Compute integrated parameters and associated errors for all pixels
|
# Compute integrated parameters and associated errors for all pixels
|
||||||
@@ -325,11 +353,11 @@ def polarization_map(Stokes, rectangle=None, SNRp_cut=3., SNRi_cut=30., step_vec
|
|||||||
|
|
||||||
P_diluted = np.sqrt(Q_diluted**2+U_diluted**2)/I_diluted*100.
|
P_diluted = np.sqrt(Q_diluted**2+U_diluted**2)/I_diluted*100.
|
||||||
P_diluted_err = (100./I_diluted)*np.sqrt((Q_diluted**2*Q_diluted_err**2 + U_diluted**2*U_diluted_err**2 + 2.*Q_diluted*U_diluted*QU_diluted_err)/(Q_diluted**2 + U_diluted**2) + ((Q_diluted/I_diluted)**2 + (U_diluted/I_diluted)**2)*I_diluted_err**2 - 2.*(Q_diluted/I_diluted)*IQ_diluted_err - 2.*(U_diluted/I_diluted)*IU_diluted_err)
|
P_diluted_err = (100./I_diluted)*np.sqrt((Q_diluted**2*Q_diluted_err**2 + U_diluted**2*U_diluted_err**2 + 2.*Q_diluted*U_diluted*QU_diluted_err)/(Q_diluted**2 + U_diluted**2) + ((Q_diluted/I_diluted)**2 + (U_diluted/I_diluted)**2)*I_diluted_err**2 - 2.*(Q_diluted/I_diluted)*IQ_diluted_err - 2.*(U_diluted/I_diluted)*IU_diluted_err)
|
||||||
P_diluted_err = np.sqrt(2/n_pix)*100.
|
#P_diluted_err = np.sqrt(2/n_pix)*100.
|
||||||
|
|
||||||
PA_diluted = (90./np.pi)*np.arctan2(U_diluted,Q_diluted)+90.*2
|
PA_diluted = princ_angle((90./np.pi)*np.arctan2(U_diluted,Q_diluted))
|
||||||
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
|
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
|
||||||
PA_diluted_err = P_diluted_err/(2.*P_diluted)*180./np.pi
|
#PA_diluted_err = P_diluted_err/(2.*P_diluted)*180./np.pi
|
||||||
|
|
||||||
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(pivot_wav,sci_not(I_diluted*convert_flux,I_diluted_err*convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_diluted,P_diluted_err)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_diluted,PA_diluted_err), color='white', fontsize=16, xy=(0.01, 0.92), xycoords='axes fraction')
|
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(pivot_wav,sci_not(I_diluted*convert_flux,I_diluted_err*convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_diluted,P_diluted_err)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_diluted,PA_diluted_err), color='white', fontsize=16, xy=(0.01, 0.92), xycoords='axes fraction')
|
||||||
|
|
||||||
|
|||||||
@@ -26,19 +26,15 @@ prototypes :
|
|||||||
- polarizer_avg(data_array, error_array, headers, FWHM, scale, smoothing) -> polarizer_array, pol_error_array
|
- polarizer_avg(data_array, error_array, headers, FWHM, scale, smoothing) -> polarizer_array, pol_error_array
|
||||||
Average images in data_array on each used polarizer filter.
|
Average images in data_array on each used polarizer filter.
|
||||||
|
|
||||||
- compute_Stokes(data_array, error_array, headers, FWHM, scale, smoothing) -> I_stokes, Q_stokes, U_stokes, Stokes_cov
|
- compute_Stokes(data_array, error_array, headers, FWHM, scale, smoothing) -> I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux
|
||||||
Compute Stokes parameters I, Q and U and their respective errors from data_array.
|
Compute Stokes parameters I, Q and U and their respective errors from data_array.
|
||||||
|
|
||||||
- compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers) -> P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
- compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, headers) -> P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||||
Compute polarization degree (in %) and angle (in degree) and their
|
Compute polarization degree (in %) and angle (in degree) and their
|
||||||
respective errors
|
respective errors
|
||||||
|
|
||||||
- rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang) -> I_stokes, Q_stokes, U_stokes, Stokes_cov, headers
|
- rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, headers, ang) -> I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, headers
|
||||||
Rotate I, Q, U given an angle in degrees using scipy functions.
|
Rotate I, Q, U given an angle in degrees using scipy functions.
|
||||||
|
|
||||||
- rotate2_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang) -> I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers
|
|
||||||
Rotate I, Q, U, P, PA and associated errors given an angle in degrees
|
|
||||||
using scipy functions.
|
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import copy
|
import copy
|
||||||
@@ -56,6 +52,14 @@ from lib.plots import plot_obs
|
|||||||
from lib.cross_correlation import phase_cross_correlation
|
from lib.cross_correlation import phase_cross_correlation
|
||||||
|
|
||||||
|
|
||||||
|
# Useful tabulated values
|
||||||
|
#FOC instrument
|
||||||
|
globals()['trans2'] = {'f140w' : 0.21, 'f175w' : 0.24, 'f220w' : 0.39, 'f275w' : 0.40, 'f320w' : 0.89, 'f342w' : 0.81, 'f430w' : 0.74, 'f370lp' : 0.83, 'f486n' : 0.63, 'f501n' : 0.68, 'f480lp' : 0.82, 'clear2' : 1.0}
|
||||||
|
globals()['trans3'] = {'f120m' : 0.10, 'f130m' : 0.10, 'f140m' : 0.08, 'f152m' : 0.08, 'f165w' : 0.28, 'f170m' : 0.18, 'f195w' : 0.42, 'f190m' : 0.15, 'f210m' : 0.18, 'f231m' : 0.18, 'clear3' : 1.0}
|
||||||
|
globals()['trans4'] = {'f253m' : 0.18, 'f278m' : 0.26, 'f307m' : 0.26, 'f130lp' : 0.92, 'f346m' : 0.58, 'f372m' : 0.73, 'f410m' : 0.58, 'f437m' : 0.71, 'f470m' : 0.79, 'f502m' : 0.82, 'f550m' : 0.77, 'clear4' : 1.0}
|
||||||
|
globals()['pol_efficiency'] = {'pol0' : 0.92, 'pol60' : 0.92, 'pol120' : 0.91}
|
||||||
|
|
||||||
|
|
||||||
def get_row_compressor(old_dimension, new_dimension, operation='sum'):
|
def get_row_compressor(old_dimension, new_dimension, operation='sum'):
|
||||||
"""
|
"""
|
||||||
Return the matrix that allows to compress an array from an old dimension of
|
Return the matrix that allows to compress an array from an old dimension of
|
||||||
@@ -438,6 +442,19 @@ def get_error(data_array, sub_shape=(15,15), display=False, headers=None,
|
|||||||
#error = np.std(sub_image) # Previously computed using standard deviation over the background
|
#error = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||||
error = np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
error = np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||||
error_array[i] *= error
|
error_array[i] *= error
|
||||||
|
|
||||||
|
# Quadratically add uncertainties in the "correction factors" (see Kishimoto 1999)
|
||||||
|
#wavelength dependence of the polariser filters
|
||||||
|
#estimated to less than 1%
|
||||||
|
err_wav = data_array[i]*0.01
|
||||||
|
#difference in PSFs through each polarizers
|
||||||
|
#estimated to less than 3%
|
||||||
|
err_psf = data_array[i]*0.03
|
||||||
|
#flatfielding uncertainties
|
||||||
|
#estimated to less than 3%
|
||||||
|
err_flat = data_array[i]*0.03
|
||||||
|
error_array[i] = np.sqrt(error_array[i]**2 + err_wav**2 + err_psf**2 + err_flat**2)
|
||||||
|
|
||||||
background[i] = sub_image.sum()
|
background[i] = sub_image.sum()
|
||||||
data_array[i] = data_array[i] - sub_image.mean()
|
data_array[i] = data_array[i] - sub_image.mean()
|
||||||
data_array[i][data_array[i] < 0.] = 0.
|
data_array[i][data_array[i] < 0.] = 0.
|
||||||
@@ -727,6 +744,13 @@ def align_data(data_array, headers, error_array=None, upsample_factor=1.,
|
|||||||
|
|
||||||
rescaled_image[i][rescaled_image[i] < 0.] = 0.
|
rescaled_image[i][rescaled_image[i] < 0.] = 0.
|
||||||
|
|
||||||
|
# Uncertainties from shifting
|
||||||
|
prec_shift = np.array([1.,1.])/upsample_factor
|
||||||
|
shifted_image = sc_shift(rescaled_image[i], prec_shift, cval=0.)
|
||||||
|
error_shift = np.abs(rescaled_image[i] - shifted_image)/2.
|
||||||
|
#sum quadratically the errors
|
||||||
|
rescaled_error[i] = np.sqrt(rescaled_error[i]**2 + error_shift**2)
|
||||||
|
|
||||||
shifts.append(shift)
|
shifts.append(shift)
|
||||||
errors.append(error)
|
errors.append(error)
|
||||||
|
|
||||||
@@ -937,10 +961,6 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
|||||||
FWHM=FWHM, scale=scale, smoothing=smoothing)
|
FWHM=FWHM, scale=scale, smoothing=smoothing)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
# Average on each polarization filter.
|
|
||||||
#pol0 = pol0_array.mean(axis=0)
|
|
||||||
#pol60 = pol60_array.mean(axis=0)
|
|
||||||
#pol120 = pol120_array.mean(axis=0)
|
|
||||||
# Sum on each polarization filter.
|
# Sum on each polarization filter.
|
||||||
print("Exposure time for polarizer 0°/60°/120° : ",
|
print("Exposure time for polarizer 0°/60°/120° : ",
|
||||||
np.sum([header['exptime'] for header in headers0]),
|
np.sum([header['exptime'] for header in headers0]),
|
||||||
@@ -953,9 +973,6 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
|||||||
|
|
||||||
|
|
||||||
# Propagate uncertainties quadratically
|
# Propagate uncertainties quadratically
|
||||||
#err0 = np.mean(err0_array,axis=0)/np.sqrt(err0_array.shape[0])
|
|
||||||
#err60 = np.mean(err60_array,axis=0)/np.sqrt(err60_array.shape[0])
|
|
||||||
#err120 = np.mean(err120_array,axis=0)/np.sqrt(err120_array.shape[0])
|
|
||||||
err0 = np.sum(err0_array,axis=0)*np.sqrt(err0_array.shape[0])
|
err0 = np.sum(err0_array,axis=0)*np.sqrt(err0_array.shape[0])
|
||||||
err60 = np.sum(err60_array,axis=0)*np.sqrt(err60_array.shape[0])
|
err60 = np.sum(err60_array,axis=0)*np.sqrt(err60_array.shape[0])
|
||||||
err120 = np.sum(err120_array,axis=0)*np.sqrt(err120_array.shape[0])
|
err120 = np.sum(err120_array,axis=0)*np.sqrt(err120_array.shape[0])
|
||||||
@@ -1042,6 +1059,9 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
|||||||
+45/-45deg linear polarization intensity
|
+45/-45deg linear polarization intensity
|
||||||
Stokes_cov : numpy.ndarray
|
Stokes_cov : numpy.ndarray
|
||||||
Covariance matrix of the Stokes parameters I, Q, U.
|
Covariance matrix of the Stokes parameters I, Q, U.
|
||||||
|
pol_flux : numpy.ndarray
|
||||||
|
Array containing the transmittance corrected fluxes from the multiple
|
||||||
|
polarizer plates
|
||||||
"""
|
"""
|
||||||
# Check that all images are from the same instrument
|
# Check that all images are from the same instrument
|
||||||
instr = headers[0]['instrume']
|
instr = headers[0]['instrume']
|
||||||
@@ -1064,15 +1084,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
|||||||
print("WARNING : Negative value in polarizer array.")
|
print("WARNING : Negative value in polarizer array.")
|
||||||
|
|
||||||
# Stokes parameters
|
# Stokes parameters
|
||||||
#default
|
|
||||||
#I_stokes = (2./3.)*(pol0 + pol60 + pol120)
|
|
||||||
#Q_stokes = (2./3.)*(2*pol0 - pol60 - pol120)
|
|
||||||
#U_stokes = (2./np.sqrt(3.))*(pol60 - pol120)
|
|
||||||
|
|
||||||
#transmittance corrected
|
#transmittance corrected
|
||||||
trans2 = {'f140w' : 0.21, 'f175w' : 0.24, 'f220w' : 0.39, 'f275w' : 0.40, 'f320w' : 0.89, 'f342w' : 0.81, 'f430w' : 0.74, 'f370lp' : 0.83, 'f486n' : 0.63, 'f501n' : 0.68, 'f480lp' : 0.82, 'clear2' : 1.0}
|
|
||||||
trans3 = {'f120m' : 0.10, 'f130m' : 0.10, 'f140m' : 0.08, 'f152m' : 0.08, 'f165w' : 0.28, 'f170m' : 0.18, 'f195w' : 0.42, 'f190m' : 0.15, 'f210m' : 0.18, 'f231m' : 0.18, 'clear3' : 1.0}
|
|
||||||
trans4 = {'f253m' : 0.18, 'f278m' : 0.26, 'f307m' : 0.26, 'f130lp' : 0.92, 'f346m' : 0.58, 'f372m' : 0.73, 'f410m' : 0.58, 'f437m' : 0.71, 'f470m' : 0.79, 'f502m' : 0.82, 'f550m' : 0.77, 'clear4' : 1.0}
|
|
||||||
transmit = np.ones((3,)) #will be filter dependant
|
transmit = np.ones((3,)) #will be filter dependant
|
||||||
filt2 = headers[0]['filtnam2']
|
filt2 = headers[0]['filtnam2']
|
||||||
filt3 = headers[0]['filtnam3']
|
filt3 = headers[0]['filtnam3']
|
||||||
@@ -1092,27 +1104,26 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
|||||||
transmit4 = trans4[filt4.lower()]
|
transmit4 = trans4[filt4.lower()]
|
||||||
transmit *= transmit2*transmit3*transmit4
|
transmit *= transmit2*transmit3*transmit4
|
||||||
|
|
||||||
pol_efficiency = {'pol0' : 0.92, 'pol60' : 0.92, 'pol120' : 0.91}
|
|
||||||
pol_eff = np.ones((3,))
|
pol_eff = np.ones((3,))
|
||||||
pol_eff[0] = pol_efficiency['pol0']
|
pol_eff[0] = pol_efficiency['pol0']
|
||||||
pol_eff[1] = pol_efficiency['pol60']
|
pol_eff[1] = pol_efficiency['pol60']
|
||||||
pol_eff[2] = pol_efficiency['pol120']
|
pol_eff[2] = pol_efficiency['pol120']
|
||||||
|
|
||||||
theta = np.array([np.pi, np.pi/3., 2.*np.pi/3.])
|
theta = np.array([np.pi, np.pi/3., 2.*np.pi/3.])
|
||||||
flux = 2.*np.array([pol0/transmit[0], pol60/transmit[1], pol120/transmit[2]])
|
pol_flux = 2.*np.array([pol0/transmit[0], pol60/transmit[1], pol120/transmit[2]])
|
||||||
|
|
||||||
norm = pol_eff[1]*pol_eff[2]*np.sin(-2.*theta[1]+2.*theta[2]) \
|
norm = pol_eff[1]*pol_eff[2]*np.sin(-2.*theta[1]+2.*theta[2]) \
|
||||||
+ pol_eff[2]*pol_eff[0]*np.sin(-2.*theta[2]+2.*theta[0]) \
|
+ pol_eff[2]*pol_eff[0]*np.sin(-2.*theta[2]+2.*theta[0]) \
|
||||||
+ pol_eff[0]*pol_eff[1]*np.sin(-2.*theta[0]+2.*theta[1])
|
+ pol_eff[0]*pol_eff[1]*np.sin(-2.*theta[0]+2.*theta[1])
|
||||||
coeff = np.zeros((3,3))
|
globals()['a_stokes'] = np.zeros((3,3))
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
coeff[0,i] = pol_eff[(i+1)%3]*pol_eff[(i+2)%3]*np.sin(-2.*theta[(i+1)%3]+2.*theta[(i+2)%3])/norm
|
a_stokes[0,i] = pol_eff[(i+1)%3]*pol_eff[(i+2)%3]*np.sin(-2.*theta[(i+1)%3]+2.*theta[(i+2)%3])/norm
|
||||||
coeff[1,i] = (-pol_eff[(i+1)%3]*np.sin(2.*theta[(i+1)%3]) + pol_eff[(i+2)%3]*np.sin(2.*theta[(i+2)%3]))/norm
|
a_stokes[1,i] = (-pol_eff[(i+1)%3]*np.sin(2.*theta[(i+1)%3]) + pol_eff[(i+2)%3]*np.sin(2.*theta[(i+2)%3]))/norm
|
||||||
coeff[2,i] = (pol_eff[(i+1)%3]*np.cos(2.*theta[(i+1)%3]) - pol_eff[(i+2)%3]*np.cos(2.*theta[(i+2)%3]))/norm
|
a_stokes[2,i] = (pol_eff[(i+1)%3]*np.cos(2.*theta[(i+1)%3]) - pol_eff[(i+2)%3]*np.cos(2.*theta[(i+2)%3]))/norm
|
||||||
|
|
||||||
I_stokes = np.sum([coeff[0,i]*flux[i] for i in range(3)], axis=0)
|
I_stokes = np.sum([a_stokes[0,i]*pol_flux[i] for i in range(3)], axis=0)
|
||||||
Q_stokes = np.sum([coeff[1,i]*flux[i] for i in range(3)], axis=0)
|
Q_stokes = np.sum([a_stokes[1,i]*pol_flux[i] for i in range(3)], axis=0)
|
||||||
U_stokes = np.sum([coeff[2,i]*flux[i] for i in range(3)], axis=0)
|
U_stokes = np.sum([a_stokes[2,i]*pol_flux[i] for i in range(3)], axis=0)
|
||||||
|
|
||||||
# Remove nan
|
# Remove nan
|
||||||
I_stokes[np.isnan(I_stokes)]=0.
|
I_stokes[np.isnan(I_stokes)]=0.
|
||||||
@@ -1125,15 +1136,6 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
|||||||
if mask.any():
|
if mask.any():
|
||||||
print("WARNING : I_pol > I_stokes : ", I_stokes[mask].size)
|
print("WARNING : I_pol > I_stokes : ", I_stokes[mask].size)
|
||||||
|
|
||||||
#plt.imshow(np.sqrt(Q_stokes**2+U_stokes**2)/I_stokes*mask, origin='lower')
|
|
||||||
#plt.colorbar()
|
|
||||||
#plt.title(r"$I_{pol}/I_{tot}$")
|
|
||||||
#plt.show()
|
|
||||||
|
|
||||||
#I_stokes[mask]=0.
|
|
||||||
#Q_stokes[mask]=0.
|
|
||||||
#U_stokes[mask]=0.
|
|
||||||
|
|
||||||
#Stokes covariance matrix
|
#Stokes covariance matrix
|
||||||
Stokes_cov = np.zeros((3,3,I_stokes.shape[0],I_stokes.shape[1]))
|
Stokes_cov = np.zeros((3,3,I_stokes.shape[0],I_stokes.shape[1]))
|
||||||
Stokes_cov[0,0] = (4./9.)*(pol_cov[0,0]+pol_cov[1,1]+pol_cov[2,2]) + (8./9.)*(pol_cov[0,1]+pol_cov[0,2]+pol_cov[1,2])
|
Stokes_cov[0,0] = (4./9.)*(pol_cov[0,0]+pol_cov[1,1]+pol_cov[2,2]) + (8./9.)*(pol_cov[0,1]+pol_cov[0,2]+pol_cov[1,2])
|
||||||
@@ -1154,10 +1156,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
|||||||
I_stokes, Q_stokes, U_stokes = Stokes_array
|
I_stokes, Q_stokes, U_stokes = Stokes_array
|
||||||
Stokes_cov[0,0], Stokes_cov[1,1], Stokes_cov[2,2] = Stokes_error**2
|
Stokes_cov[0,0], Stokes_cov[1,1], Stokes_cov[2,2] = Stokes_error**2
|
||||||
|
|
||||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov
|
return I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux
|
||||||
|
|
||||||
|
|
||||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, headers):
|
||||||
"""
|
"""
|
||||||
Compute the polarization degree (in %) and angle (in deg) and their
|
Compute the polarization degree (in %) and angle (in deg) and their
|
||||||
respective errors from given Stokes parameters.
|
respective errors from given Stokes parameters.
|
||||||
@@ -1174,6 +1176,9 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
|||||||
+45/-45deg linear polarization intensity
|
+45/-45deg linear polarization intensity
|
||||||
Stokes_cov : numpy.ndarray
|
Stokes_cov : numpy.ndarray
|
||||||
Covariance matrix of the Stokes parameters I, Q, U.
|
Covariance matrix of the Stokes parameters I, Q, U.
|
||||||
|
pol_flux : numpy.ndarray
|
||||||
|
Array containing the transmittance corrected fluxes from the multiple
|
||||||
|
polarizer plates
|
||||||
headers : header list
|
headers : header list
|
||||||
List of headers corresponding to the images in data_array.
|
List of headers corresponding to the images in data_array.
|
||||||
----------
|
----------
|
||||||
@@ -1202,15 +1207,32 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
|||||||
I_pol = np.sqrt(Q_stokes**2 + U_stokes**2)
|
I_pol = np.sqrt(Q_stokes**2 + U_stokes**2)
|
||||||
P = I_pol/I_stokes*100.
|
P = I_pol/I_stokes*100.
|
||||||
P[I_stokes <= 0.] = 0.
|
P[I_stokes <= 0.] = 0.
|
||||||
PA = (90./np.pi)*np.arctan2(U_stokes,Q_stokes)+90.*2.
|
PA = (90./np.pi)*np.arctan2(U_stokes,Q_stokes)
|
||||||
|
|
||||||
if (P>100.).any():
|
if (P>100.).any():
|
||||||
print("WARNING : found pixels for which P > 100%", P[P>100.].size)
|
print("WARNING : found pixels for which P > 100%", P[P>100.].size)
|
||||||
|
|
||||||
#Associated errors
|
#Associated errors
|
||||||
s_P = (100./I_stokes)*np.sqrt((Q_stokes**2*Stokes_cov[1,1] + U_stokes**2*Stokes_cov[2,2] + 2.*Q_stokes*U_stokes*Stokes_cov[1,2])/(Q_stokes**2 + U_stokes**2) + ((Q_stokes/I_stokes)**2 + (U_stokes/I_stokes)**2)*Stokes_cov[0,0] - 2.*(Q_stokes/I_stokes)*Stokes_cov[0,1] - 2.*(U_stokes/I_stokes)*Stokes_cov[0,2])
|
s_P = (100./I_stokes)*np.sqrt((Q_stokes**2*Stokes_cov[1,1] + U_stokes**2*Stokes_cov[2,2] + 2.*Q_stokes*U_stokes*Stokes_cov[1,2])/(Q_stokes**2 + U_stokes**2) + ((Q_stokes/I_stokes)**2 + (U_stokes/I_stokes)**2)*Stokes_cov[0,0] - 2.*(Q_stokes/I_stokes)*Stokes_cov[0,1] - 2.*(U_stokes/I_stokes)*Stokes_cov[0,2])
|
||||||
|
|
||||||
s_PA = (90./(np.pi*(Q_stokes**2 + U_stokes**2)))*np.sqrt(U_stokes**2*Stokes_cov[1,1] + Q_stokes**2*Stokes_cov[2,2] - 2.*Q_stokes*U_stokes*Stokes_cov[1,2])
|
s_PA = (90./(np.pi*(Q_stokes**2 + U_stokes**2)))*np.sqrt(U_stokes**2*Stokes_cov[1,1] + Q_stokes**2*Stokes_cov[2,2] - 2.*Q_stokes*U_stokes*Stokes_cov[1,2])
|
||||||
|
#Error propagated from uncertainties in the direction of polarizers' axis
|
||||||
|
#uncertainty estimated to 3° (see Nota et al 1996)
|
||||||
|
k1, k2, k3 = pol_efficiency['pol0'], pol_efficiency['pol60'], pol_efficiency['pol120']
|
||||||
|
f1, f2, f3 = pol_flux
|
||||||
|
theta1, theta2, theta3 = np.pi, np.pi/3., 2.*np.pi/3.
|
||||||
|
|
||||||
|
norm = k2*k3*np.sin(-2.*theta2+2.*theta3) + k3*k1*np.sin(-2.*theta3+2.*theta1) + k1*k2*np.sin(-2.*theta1+2.*theta2)
|
||||||
|
C1 = 1/(I_stokes**2*P/100.)
|
||||||
|
C2 = P/100./I_stokes
|
||||||
|
dP_dtheta1 = 2.*(k1*k2*k3/norm) * (np.cos(-2.*theta3+2.*theta1)/k2 - np.cos(-2.*theta1+2.*theta2)/k3) * (((a_stokes[1,0]+a_stokes[2,0]-1.)*C1 + a_stokes[0,0]*C2)*f1 + ((a_stokes[0,1]) * (C2-C1))*f2 + ((a_stokes[0,2]) * (C2-C1))*f3)
|
||||||
|
dP_dtheta2 = 2.*(k1*k2*k3/norm) * (np.cos(-2.*theta1+2.*theta2)/k3 - np.cos(-2.*theta2+2.*theta3)/k1) * (((a_stokes[1,0]+a_stokes[2,0]-1./(1.-k3/k1*np.cos(-2.*theta2+2.*theta1)/np.cos(-2*theta1+2.*theta2)))*C1 + (a_stokes[0,0]-1./(1.-k1/k3*np.cos(-2.*theta1+2.*theta2)/np.cos(-2*theta2+2.*theta3))*C2)*f1 + ((a_stokes[0,1]+np.cos(2.*theta2)/(a_stokes[1,2]*np.cos(2.*theta2)-a_stokes[1,1]*np.sin(2.*theta2))) * (C2-C1))*f2 + ((a_stokes[0,2]+np.sin(2.*theta2)/(a_stokes[1,2]*np.cos(2.*theta2)-a_stokes[1,1]*np.sin(2.*theta2))) * (C2-C1))*f3))
|
||||||
|
dP_dtheta3 = 2.*(k1*k2*k3/norm) * (np.cos(-2.*theta2+2.*theta3)/k1 - np.cos(-2.*theta3+2.*theta1)/k2) * (((a_stokes[1,0]+a_stokes[2,0]+1./(1.-k1/k2*np.cos(-2.*theta3+2.*theta1)/np.cos(-2*theta2+2.*theta3)))*C1 + (a_stokes[0,0]+1./(1.-k2/k1*np.cos(-2.*theta2+2.*theta3)/np.cos(-2*theta3+2.*theta1))*C2)*f1 + ((a_stokes[0,1]+np.cos(2.*theta3)/(a_stokes[2,2]*np.cos(2.*theta3)-a_stokes[2,1]*np.sin(2.*theta3))) * (C2-C1))*f2 + ((a_stokes[0,2]+np.sin(2.*theta3)/(a_stokes[2,2]*np.cos(2.*theta3)-a_stokes[2,1]*np.sin(2.*theta3))) * (C2-C1))*f3))
|
||||||
|
|
||||||
|
s_P_ax = np.sqrt(dP_dtheta1**2+dP_dtheta2**2+dP_dtheta3**2)*3.
|
||||||
|
s_PA_ax = np.ones(s_PA.shape)/np.sqrt(2)*3.
|
||||||
|
#Sum quadratically
|
||||||
|
s_P = np.sqrt(s_P**2 + s_P_ax**2)
|
||||||
|
s_PA = np.sqrt(s_PA**2 + s_PA_ax**2)
|
||||||
|
|
||||||
debiased_P = np.sqrt(P**2 - s_P**2)
|
debiased_P = np.sqrt(P**2 - s_P**2)
|
||||||
|
|
||||||
@@ -1240,77 +1262,7 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
|||||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||||
|
|
||||||
|
|
||||||
def rotate_data(data_array, error_array, data_mask, headers, ang):
|
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, pol_flux, data_mask, headers, ang, SNRi_cut=None):
|
||||||
"""
|
|
||||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
|
||||||
matrix to rotate Q, U of a given angle in degrees and update header
|
|
||||||
orientation keyword.
|
|
||||||
----------
|
|
||||||
Inputs:
|
|
||||||
data_array : numpy.ndarray
|
|
||||||
Array of images (2D floats) to be rotated by angle ang.
|
|
||||||
error_array : numpy.ndarray
|
|
||||||
Array of error associated to images in data_array.
|
|
||||||
headers : header list
|
|
||||||
List of headers corresponding to the reduced images.
|
|
||||||
ang : float
|
|
||||||
Rotation angle (in degrees) that should be applied to the Stokes
|
|
||||||
parameters
|
|
||||||
----------
|
|
||||||
Returns:
|
|
||||||
new_data_array : numpy.ndarray
|
|
||||||
Updated array containing the rotated images.
|
|
||||||
new_error_array : numpy.ndarray
|
|
||||||
Updated array containing the rotated errors.
|
|
||||||
new_headers : header list
|
|
||||||
Updated list of headers corresponding to the reduced images accounting
|
|
||||||
for the new orientation angle.
|
|
||||||
"""
|
|
||||||
#Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
|
||||||
alpha = ang*np.pi/180.
|
|
||||||
|
|
||||||
#Rotate original images using scipy.ndimage.rotate
|
|
||||||
new_data_array = []
|
|
||||||
new_error_array = []
|
|
||||||
for i in range(data_array.shape[0]):
|
|
||||||
new_data_array.append(sc_rotate(data_array[i], ang, reshape=False,
|
|
||||||
cval=0.))
|
|
||||||
new_error_array.append(sc_rotate(error_array[i], ang, reshape=False,
|
|
||||||
cval=error_array.mean()))
|
|
||||||
new_data_array = np.array(new_data_array)
|
|
||||||
new_data_mask = sc_rotate(data_mask, ang, reshape=False, cval=True)
|
|
||||||
new_error_array = np.array(new_error_array)
|
|
||||||
|
|
||||||
for i in range(new_data_array.shape[0]):
|
|
||||||
new_data_array[i][new_data_array[i] < 0.] = 0.
|
|
||||||
|
|
||||||
#Update headers to new angle
|
|
||||||
new_headers = []
|
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
|
||||||
[np.sin(-alpha), np.cos(-alpha)]])
|
|
||||||
for header in headers:
|
|
||||||
new_header = copy.deepcopy(header)
|
|
||||||
new_header['orientat'] = header['orientat'] + ang
|
|
||||||
|
|
||||||
new_wcs = WCS(header).deepcopy()
|
|
||||||
if new_wcs.wcs.has_cd(): # CD matrix
|
|
||||||
del new_wcs.wcs.cd
|
|
||||||
keys = ['CD1_1','CD1_2','CD2_1','CD2_2']
|
|
||||||
for key in keys:
|
|
||||||
new_header.remove(key, ignore_missing=True)
|
|
||||||
new_wcs.wcs.cdelt = 3600.*np.sqrt(np.sum(new_wcs.wcs.get_pc()**2,axis=1))
|
|
||||||
elif new_wcs.wcs.has_pc(): # PC matrix + CDELT
|
|
||||||
newpc = np.dot(mrot, new_wcs.wcs.get_pc())
|
|
||||||
new_wcs.wcs.pc = newpc
|
|
||||||
new_wcs.wcs.set()
|
|
||||||
new_header.update(new_wcs.to_header())
|
|
||||||
|
|
||||||
new_headers.append(new_header)
|
|
||||||
|
|
||||||
return new_data_array, new_error_array, new_data_mask, new_headers
|
|
||||||
|
|
||||||
|
|
||||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, ang, SNRi_cut=None):
|
|
||||||
"""
|
"""
|
||||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||||
matrix to rotate Q, U of a given angle in degrees and update header
|
matrix to rotate Q, U of a given angle in degrees and update header
|
||||||
@@ -1328,6 +1280,9 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
|||||||
+45/-45deg linear polarization intensity
|
+45/-45deg linear polarization intensity
|
||||||
Stokes_cov : numpy.ndarray
|
Stokes_cov : numpy.ndarray
|
||||||
Covariance matrix of the Stokes parameters I, Q, U.
|
Covariance matrix of the Stokes parameters I, Q, U.
|
||||||
|
pol_flux : numpy.ndarray
|
||||||
|
Array containing the transmittance corrected fluxes from the multiple
|
||||||
|
polarizer plates
|
||||||
headers : header list
|
headers : header list
|
||||||
List of headers corresponding to the reduced images.
|
List of headers corresponding to the reduced images.
|
||||||
ang : float
|
ang : float
|
||||||
@@ -1350,6 +1305,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
|||||||
accounting for +45/-45deg linear polarization intensity.
|
accounting for +45/-45deg linear polarization intensity.
|
||||||
new_Stokes_cov : numpy.ndarray
|
new_Stokes_cov : numpy.ndarray
|
||||||
Updated covariance matrix of the Stokes parameters I, Q, U.
|
Updated covariance matrix of the Stokes parameters I, Q, U.
|
||||||
|
new_pol_flux : numpy.ndarray
|
||||||
|
Rotated fluxes from the multiple polarizer plates
|
||||||
new_headers : header list
|
new_headers : header list
|
||||||
Updated list of headers corresponding to the reduced images accounting
|
Updated list of headers corresponding to the reduced images accounting
|
||||||
for the new orientation angle.
|
for the new orientation angle.
|
||||||
@@ -1372,6 +1329,8 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
|||||||
new_Q_stokes = np.cos(2*alpha)*Q_stokes + np.sin(2*alpha)*U_stokes
|
new_Q_stokes = np.cos(2*alpha)*Q_stokes + np.sin(2*alpha)*U_stokes
|
||||||
new_U_stokes = -np.sin(2*alpha)*Q_stokes + np.cos(2*alpha)*U_stokes
|
new_U_stokes = -np.sin(2*alpha)*Q_stokes + np.cos(2*alpha)*U_stokes
|
||||||
|
|
||||||
|
new_pol_flux = copy.deepcopy(pol_flux)
|
||||||
|
|
||||||
#Compute new covariance matrix on rotated parameters
|
#Compute new covariance matrix on rotated parameters
|
||||||
new_Stokes_cov = copy.deepcopy(Stokes_cov)
|
new_Stokes_cov = copy.deepcopy(Stokes_cov)
|
||||||
new_Stokes_cov[1,1] = np.cos(2.*alpha)**2*Stokes_cov[1,1] + np.sin(2.*alpha)**2*Stokes_cov[2,2] + 2.*np.cos(2.*alpha)*np.sin(2.*alpha)*Stokes_cov[1,2]
|
new_Stokes_cov[1,1] = np.cos(2.*alpha)**2*Stokes_cov[1,1] + np.sin(2.*alpha)**2*Stokes_cov[2,2] + 2.*np.cos(2.*alpha)*np.sin(2.*alpha)*Stokes_cov[1,2]
|
||||||
@@ -1386,6 +1345,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
|||||||
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False, cval=0.)
|
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False, cval=0.)
|
||||||
new_data_mask = sc_rotate(data_mask, ang, reshape=False, cval=True)
|
new_data_mask = sc_rotate(data_mask, ang, reshape=False, cval=True)
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
|
new_pol_flux[i] = sc_rotate(new_pol_flux[i], ang, reshape=False, cval=0.)
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang,
|
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang,
|
||||||
reshape=False, cval=0.)
|
reshape=False, cval=0.)
|
||||||
@@ -1421,139 +1381,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
|||||||
new_U_stokes[new_I_stokes == 0.] = 0.
|
new_U_stokes[new_I_stokes == 0.] = 0.
|
||||||
new_Q_stokes[np.isnan(new_Q_stokes)] = 0.
|
new_Q_stokes[np.isnan(new_Q_stokes)] = 0.
|
||||||
new_U_stokes[np.isnan(new_U_stokes)] = 0.
|
new_U_stokes[np.isnan(new_U_stokes)] = 0.
|
||||||
|
new_pol_flux[np.isnan(new_pol_flux)] = 0.
|
||||||
new_Stokes_cov[np.isnan(new_Stokes_cov)] = fmax
|
new_Stokes_cov[np.isnan(new_Stokes_cov)] = fmax
|
||||||
|
|
||||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_headers
|
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_pol_flux, new_data_mask, new_headers
|
||||||
|
|
||||||
|
|
||||||
def rotate2_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, ang):
|
|
||||||
"""
|
|
||||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
|
||||||
matrix to rotate Q, U of a given angle in degrees and update header
|
|
||||||
orientation keyword.
|
|
||||||
----------
|
|
||||||
Inputs:
|
|
||||||
I_stokes : numpy.ndarray
|
|
||||||
Image (2D floats) containing the Stokes parameters accounting for
|
|
||||||
total intensity
|
|
||||||
Q_stokes : numpy.ndarray
|
|
||||||
Image (2D floats) containing the Stokes parameters accounting for
|
|
||||||
vertical/horizontal linear polarization intensity
|
|
||||||
U_stokes : numpy.ndarray
|
|
||||||
Image (2D floats) containing the Stokes parameters accounting for
|
|
||||||
+45/-45deg linear polarization intensity
|
|
||||||
Stokes_cov : numpy.ndarray
|
|
||||||
Covariance matrix of the Stokes parameters I, Q, U.
|
|
||||||
headers : header list
|
|
||||||
List of headers corresponding to the reduced images.
|
|
||||||
ang : float
|
|
||||||
Rotation angle (in degrees) that should be applied to the Stokes
|
|
||||||
parameters
|
|
||||||
----------
|
|
||||||
Returns:
|
|
||||||
new_I_stokes : numpy.ndarray
|
|
||||||
Rotated mage (2D floats) containing the rotated Stokes parameters
|
|
||||||
accounting for total intensity
|
|
||||||
new_Q_stokes : numpy.ndarray
|
|
||||||
Rotated mage (2D floats) containing the rotated Stokes parameters
|
|
||||||
accounting for vertical/horizontal linear polarization intensity
|
|
||||||
new_U_stokes : numpy.ndarray
|
|
||||||
Rotated image (2D floats) containing the rotated Stokes parameters
|
|
||||||
accounting for +45/-45deg linear polarization intensity.
|
|
||||||
new_Stokes_cov : numpy.ndarray
|
|
||||||
Updated covariance matrix of the Stokes parameters I, Q, U.
|
|
||||||
P : numpy.ndarray
|
|
||||||
Image (2D floats) containing the polarization degree (in %).
|
|
||||||
s_P : numpy.ndarray
|
|
||||||
Image (2D floats) containing the error on the polarization degree.
|
|
||||||
PA : numpy.ndarray
|
|
||||||
Image (2D floats) containing the polarization angle.
|
|
||||||
s_PA : numpy.ndarray
|
|
||||||
Image (2D floats) containing the error on the polarization angle.
|
|
||||||
debiased_P : numpy.ndarray
|
|
||||||
Image (2D floats) containing the debiased polarization degree (in %).
|
|
||||||
s_P_P : numpy.ndarray
|
|
||||||
Image (2D floats) containing the Poisson noise error on the
|
|
||||||
polarization degree.
|
|
||||||
s_PA_P : numpy.ndarray
|
|
||||||
Image (2D floats) containing the Poisson noise error on the
|
|
||||||
polarization angle.
|
|
||||||
"""
|
|
||||||
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
|
||||||
alpha = ang*np.pi/180.
|
|
||||||
new_I_stokes = 1.*I_stokes
|
|
||||||
new_Q_stokes = np.cos(2*alpha)*Q_stokes + np.sin(2*alpha)*U_stokes
|
|
||||||
new_U_stokes = -np.sin(2*alpha)*Q_stokes + np.cos(2*alpha)*U_stokes
|
|
||||||
|
|
||||||
# Compute new covariance matrix on rotated parameters
|
|
||||||
new_Stokes_cov = copy.deepcopy(Stokes_cov)
|
|
||||||
new_Stokes_cov[1,1] = np.cos(2.*alpha)**2*Stokes_cov[1,1] + np.sin(2.*alpha)**2*Stokes_cov[2,2] + 2.*np.cos(2.*alpha)*np.sin(2.*alpha)*Stokes_cov[1,2]
|
|
||||||
new_Stokes_cov[2,2] = np.sin(2.*alpha)**2*Stokes_cov[1,1] + np.cos(2.*alpha)**2*Stokes_cov[2,2] - 2.*np.cos(2.*alpha)*np.sin(2.*alpha)*Stokes_cov[1,2]
|
|
||||||
new_Stokes_cov[0,1] = new_Stokes_cov[1,0] = np.cos(2.*alpha)*Stokes_cov[0,1] + np.sin(2.*alpha)*Stokes_cov[0,2]
|
|
||||||
new_Stokes_cov[0,2] = new_Stokes_cov[2,0] = -np.sin(2.*alpha)*Stokes_cov[0,1] + np.cos(2.*alpha)*Stokes_cov[0,2]
|
|
||||||
new_Stokes_cov[1,2] = new_Stokes_cov[2,1] = np.cos(2.*alpha)*np.sin(2.*alpha)*(Stokes_cov[2,2] - Stokes_cov[1,1]) + (np.cos(2.*alpha)**2 - np.sin(2.*alpha)**2)*Stokes_cov[1,2]
|
|
||||||
|
|
||||||
# Compute new polarization parameters
|
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = compute_pol(new_I_stokes,
|
|
||||||
new_Q_stokes, new_U_stokes, new_Stokes_cov, headers)
|
|
||||||
|
|
||||||
# Rotate original images using scipy.ndimage.rotate
|
|
||||||
new_I_stokes = sc_rotate(new_I_stokes, ang, reshape=False,
|
|
||||||
cval=np.sqrt(new_Stokes_cov[0,0][0,0]))
|
|
||||||
new_Q_stokes = sc_rotate(new_Q_stokes, ang, reshape=False,
|
|
||||||
cval=np.sqrt(new_Stokes_cov[1,1][0,0]))
|
|
||||||
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False,
|
|
||||||
cval=np.sqrt(new_Stokes_cov[2,2][0,0]))
|
|
||||||
P = sc_rotate(P, ang, reshape=False, cval=P.mean())
|
|
||||||
debiased_P = sc_rotate(debiased_P, ang, reshape=False,
|
|
||||||
cval=debiased_P.mean())
|
|
||||||
s_P = sc_rotate(s_P, ang, reshape=False, cval=s_P.mean())
|
|
||||||
s_P_P = sc_rotate(s_P_P, ang, reshape=False, cval=s_P_P.mean())
|
|
||||||
PA = sc_rotate(PA, ang, reshape=False, cval=PA.mean())
|
|
||||||
s_PA = sc_rotate(s_PA, ang, reshape=False, cval=s_PA.mean())
|
|
||||||
s_PA_P = sc_rotate(s_PA_P, ang, reshape=False, cval=s_PA_P.mean())
|
|
||||||
for i in range(3):
|
|
||||||
for j in range(3):
|
|
||||||
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang,
|
|
||||||
reshape=False, cval=new_Stokes_cov[i,j].mean())
|
|
||||||
|
|
||||||
#Update headers to new angle
|
|
||||||
new_headers = []
|
|
||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
|
||||||
[np.sin(-alpha), np.cos(-alpha)]])
|
|
||||||
for header in headers:
|
|
||||||
new_header = copy.deepcopy(header)
|
|
||||||
new_header['orientat'] = header['orientat'] + ang
|
|
||||||
|
|
||||||
new_wcs = WCS(header).deepcopy()
|
|
||||||
if new_wcs.wcs.has_cd(): # CD matrix
|
|
||||||
del w.wcs.cd
|
|
||||||
keys = ['CD1_1','CD1_2','CD2_1','CD2_2']
|
|
||||||
for key in keys:
|
|
||||||
new_header.remove(key, ignore_missing=True)
|
|
||||||
w.wcs.cdelt = 3600.*np.sqrt(np.sum(w.wcs.get_pc()**2,axis=1))
|
|
||||||
elif new_wcs.wcs.has_pc(): # PC matrix + CDELT
|
|
||||||
newpc = np.dot(mrot, new_wcs.wcs.get_pc())
|
|
||||||
new_wcs.wcs.pc = newpc
|
|
||||||
new_wcs.wcs.set()
|
|
||||||
new_header.update(new_wcs.to_header())
|
|
||||||
|
|
||||||
new_headers.append(new_header)
|
|
||||||
|
|
||||||
# Nan handling :
|
|
||||||
fmax = np.finfo(np.float64).max
|
|
||||||
|
|
||||||
new_I_stokes[np.isnan(new_I_stokes)] = 0.
|
|
||||||
new_Q_stokes[new_I_stokes == 0.] = 0.
|
|
||||||
new_U_stokes[new_I_stokes == 0.] = 0.
|
|
||||||
new_Q_stokes[np.isnan(new_Q_stokes)] = 0.
|
|
||||||
new_U_stokes[np.isnan(new_U_stokes)] = 0.
|
|
||||||
new_Stokes_cov[np.isnan(new_Stokes_cov)] = fmax
|
|
||||||
P[np.isnan(P)] = 0.
|
|
||||||
s_P[np.isnan(s_P)] = fmax
|
|
||||||
s_PA[np.isnan(s_PA)] = fmax
|
|
||||||
debiased_P[np.isnan(debiased_P)] = 0.
|
|
||||||
s_P_P[np.isnan(s_P_P)] = fmax
|
|
||||||
s_PA_P[np.isnan(s_PA_P)] = fmax
|
|
||||||
|
|
||||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, data_mask, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, new_headers
|
|
||||||
|
|||||||