merge bkg display change to directory change
This commit is contained in:
455
package/lib/background.py
Executable file
455
package/lib/background.py
Executable file
@@ -0,0 +1,455 @@
|
||||
"""
|
||||
Library function for background estimation steps of the reduction pipeline.
|
||||
|
||||
prototypes :
|
||||
- display_bkg(data, background, std_bkg, headers, histograms, binning, rectangle, savename, plots_folder)
|
||||
Display and save how the background noise is computed.
|
||||
- bkg_hist(data, error, mask, headers, sub_shape, display, savename, plots_folder) -> n_data_array, n_error_array, headers, background)
|
||||
Compute the error (noise) of the input array by computing the base mode of each image.
|
||||
- bkg_mini(data, error, mask, headers, sub_shape, display, savename, plots_folder) -> n_data_array, n_error_array, headers, background)
|
||||
Compute the error (noise) of the input array by looking at the sub-region of minimal flux in every image and of shape sub_shape.
|
||||
"""
|
||||
from os.path import join as path_join
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib.dates as mdates
|
||||
from matplotlib.colors import LogNorm
|
||||
from matplotlib.patches import Rectangle
|
||||
from datetime import datetime, timedelta
|
||||
from astropy.time import Time
|
||||
from lib.plots import plot_obs
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
|
||||
def gauss(x, *p):
|
||||
N, mu, sigma = p
|
||||
return N*np.exp(-(x-mu)**2/(2.*sigma**2))
|
||||
|
||||
|
||||
def gausspol(x, *p):
|
||||
N, mu, sigma, a, b, c, d = p
|
||||
return N*np.exp(-(x-mu)**2/(2.*sigma**2)) + a*np.log(x) + b/x + c*x + d
|
||||
|
||||
|
||||
def bin_centers(edges):
|
||||
return (edges[1:]+edges[:-1])/2.
|
||||
|
||||
|
||||
def display_bkg(data, background, std_bkg, headers, histograms=None, binning=None, coeff=None, rectangle=None, savename=None, plots_folder="./"):
|
||||
plt.rcParams.update({'font.size': 15})
|
||||
convert_flux = np.array([head['photflam'] for head in headers])
|
||||
date_time = np.array([Time((headers[i]['expstart']+headers[i]['expend'])/2., format='mjd', precision=0).iso for i in range(len(headers))])
|
||||
date_time = np.array([datetime.strptime(d, '%Y-%m-%d %H:%M:%S') for d in date_time])
|
||||
date_err = np.array([timedelta(seconds=headers[i]['exptime']) for i in range(len(headers))])
|
||||
filt = np.array([headers[i]['filtnam1'] for i in range(len(headers))])
|
||||
dict_filt = {"POL0": 'r', "POL60": 'g', "POL120": 'b'}
|
||||
c_filt = np.array([dict_filt[f] for f in filt])
|
||||
|
||||
fig, ax = plt.subplots(figsize=(10, 6), constrained_layout=True)
|
||||
for f in np.unique(filt):
|
||||
mask = [fil == f for fil in filt]
|
||||
ax.scatter(date_time[mask], background[mask]*convert_flux[mask], color=dict_filt[f],
|
||||
label="{0:s}".format(f))
|
||||
ax.errorbar(date_time, background*convert_flux, xerr=date_err, yerr=std_bkg*convert_flux, fmt='+k',
|
||||
markersize=0, ecolor=c_filt)
|
||||
# Date handling
|
||||
locator = mdates.AutoDateLocator()
|
||||
formatter = mdates.ConciseDateFormatter(locator)
|
||||
ax.xaxis.set_major_locator(locator)
|
||||
ax.xaxis.set_major_formatter(formatter)
|
||||
# ax.set_ylim(bottom=0.)
|
||||
ax.set_yscale('log')
|
||||
ax.set_xlabel("Observation date and time")
|
||||
ax.set_ylabel(r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
plt.legend()
|
||||
if not (savename is None):
|
||||
this_savename = deepcopy(savename)
|
||||
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
|
||||
this_savename += '_background_flux.pdf'
|
||||
else:
|
||||
this_savename = savename[:-4]+"_background_flux"+savename[-4:]
|
||||
fig.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
|
||||
|
||||
if not (histograms is None):
|
||||
filt_obs = {"POL0": 0, "POL60": 0, "POL120": 0}
|
||||
fig_h, ax_h = plt.subplots(figsize=(10, 6), constrained_layout=True)
|
||||
for i, (hist, bins) in enumerate(zip(histograms, binning)):
|
||||
filt_obs[headers[i]['filtnam1']] += 1
|
||||
ax_h.plot(bins*convert_flux[i], hist, '+', color="C{0:d}".format(i), alpha=0.8,
|
||||
label=headers[i]['filtnam1']+' (Obs '+str(filt_obs[headers[i]['filtnam1']])+')')
|
||||
ax_h.plot([background[i]*convert_flux[i], background[i]*convert_flux[i]], [hist.min(), hist.max()], 'x--', color="C{0:d}".format(i), alpha=0.8)
|
||||
if not (coeff is None):
|
||||
# ax_h.plot(bins*convert_flux[i], gausspol(bins, *coeff[i]), '--', color="C{0:d}".format(i), alpha=0.8)
|
||||
ax_h.plot(bins*convert_flux[i], gauss(bins, *coeff[i]), '--', color="C{0:d}".format(i), alpha=0.8)
|
||||
ax_h.set_xscale('log')
|
||||
ax_h.set_ylim([0., np.max([hist.max() for hist in histograms])])
|
||||
ax_h.set_xlim([np.min(background*convert_flux)*1e-2, np.max(background*convert_flux)*1e2])
|
||||
ax_h.set_xlabel(r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
ax_h.set_ylabel(r"Number of pixels in bin")
|
||||
ax_h.set_title("Histogram for each observation")
|
||||
plt.legend()
|
||||
if not (savename is None):
|
||||
this_savename = deepcopy(savename)
|
||||
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
|
||||
this_savename += '_histograms.pdf'
|
||||
else:
|
||||
this_savename = savename[:-4]+"_histograms"+savename[-4:]
|
||||
fig_h.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
|
||||
|
||||
fig2, ax2 = plt.subplots(figsize=(10, 10))
|
||||
data0 = data[0]*convert_flux[0]
|
||||
bkg_data0 = data0 <= background[0]*convert_flux[0]
|
||||
instr = headers[0]['instrume']
|
||||
rootname = headers[0]['rootname']
|
||||
exptime = headers[0]['exptime']
|
||||
filt = headers[0]['filtnam1']
|
||||
# plots
|
||||
im2 = ax2.imshow(data0, norm=LogNorm(data0[data0 > 0.].mean()/10., data0.max()), origin='lower', cmap='gray')
|
||||
ax2.imshow(bkg_data0, origin='lower', cmap='Reds', alpha=0.5)
|
||||
if not (rectangle is None):
|
||||
x, y, width, height, angle, color = rectangle[0]
|
||||
ax2.add_patch(Rectangle((x, y), width, height, edgecolor=color, fill=False, lw=2))
|
||||
ax2.annotate(instr+":"+rootname, color='white', fontsize=10, xy=(0.01, 1.00), xycoords='axes fraction', verticalalignment='top', horizontalalignment='left')
|
||||
ax2.annotate(filt, color='white', fontsize=14, xy=(0.01, 0.01), xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='left')
|
||||
ax2.annotate(str(exptime)+" s", color='white', fontsize=10, xy=(1.00, 0.01),
|
||||
xycoords='axes fraction', verticalalignment='bottom', horizontalalignment='right')
|
||||
ax2.set(xlabel='pixel offset', ylabel='pixel offset', aspect='equal')
|
||||
|
||||
fig2.subplots_adjust(hspace=0, wspace=0, right=1.0)
|
||||
fig2.colorbar(im2, ax=ax2, location='right', aspect=50, pad=0.025, label=r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||
|
||||
if not (savename is None):
|
||||
this_savename = deepcopy(savename)
|
||||
if not savename[-4:] in ['.png', '.jpg', '.pdf']:
|
||||
this_savename += '_'+filt+'_background_location.pdf'
|
||||
else:
|
||||
this_savename = savename[:-4]+'_'+filt+'_background_location'+savename[-4:]
|
||||
fig2.savefig(path_join(plots_folder, this_savename), bbox_inches='tight')
|
||||
if not (rectangle is None):
|
||||
plot_obs(data, headers, vmin=data[data > 0.].min()*convert_flux.mean(), vmax=data[data > 0.].max()*convert_flux.mean(), rectangle=rectangle,
|
||||
savename=savename+"_background_location", plots_folder=plots_folder)
|
||||
elif not (rectangle is None):
|
||||
plot_obs(data, headers, vmin=data[data > 0.].min(), vmax=data[data > 0.].max(), rectangle=rectangle)
|
||||
|
||||
plt.show()
|
||||
|
||||
|
||||
def sky_part(img):
|
||||
rand_ind = np.unique((np.random.rand(np.floor(img.size/4).astype(int))*2*img.size).astype(int) % img.size)
|
||||
rand_pix = img.flatten()[rand_ind]
|
||||
# Intensity range
|
||||
sky_med = np.median(rand_pix)
|
||||
sig = np.min([img[img < sky_med].std(), img[img > sky_med].std()])
|
||||
sky_range = [sky_med-2.*sig, np.max([sky_med+sig, 7e-4])] # Detector background average FOC Data Handbook Sec. 7.6
|
||||
|
||||
sky = img[np.logical_and(img >= sky_range[0], img <= sky_range[1])]
|
||||
return sky, sky_range
|
||||
|
||||
|
||||
def bkg_estimate(img, bins=None, chi2=None, coeff=None):
|
||||
if bins is None or chi2 is None or coeff is None:
|
||||
bins, chi2, coeff = [8], [], []
|
||||
else:
|
||||
try:
|
||||
bins.append(int(3./2.*bins[-1]))
|
||||
except IndexError:
|
||||
bins, chi2, coeff = [8], [], []
|
||||
hist, bin_edges = np.histogram(img[img > 0], bins=bins[-1])
|
||||
binning = bin_centers(bin_edges)
|
||||
peak = binning[np.argmax(hist)]
|
||||
bins_stdev = binning[hist > hist.max()/2.]
|
||||
stdev = bins_stdev[-1]-bins_stdev[0]
|
||||
# p0 = [hist.max(), peak, stdev, 1e-3, 1e-3, 1e-3, 1e-3]
|
||||
p0 = [hist.max(), peak, stdev]
|
||||
try:
|
||||
# popt, pcov = curve_fit(gausspol, binning, hist, p0=p0)
|
||||
popt, pcov = curve_fit(gauss, binning, hist, p0=p0)
|
||||
except RuntimeError:
|
||||
popt = p0
|
||||
# chi2.append(np.sum((hist - gausspol(binning, *popt))**2)/hist.size)
|
||||
chi2.append(np.sum((hist - gauss(binning, *popt))**2)/hist.size)
|
||||
coeff.append(popt)
|
||||
return bins, chi2, coeff
|
||||
|
||||
|
||||
def bkg_fit(data, error, mask, headers, subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
----------
|
||||
Inputs:
|
||||
data : numpy.ndarray
|
||||
Array containing the data to study (2D float arrays).
|
||||
error : numpy.ndarray
|
||||
Array of images (2D floats, aligned and of the same shape) containing
|
||||
the error in each pixel of the observation images in data_array.
|
||||
mask : numpy.ndarray
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
Headers associated with the images in data_array.
|
||||
subtract_error : float or bool, optional
|
||||
If float, factor to which the estimated background should be multiplied
|
||||
If False the background is not subtracted.
|
||||
Defaults to True (factor = 1.).
|
||||
display : boolean, optional
|
||||
If True, data_array will be displayed with a rectangle around the
|
||||
sub-image selected for background computation.
|
||||
Defaults to False.
|
||||
savename : str, optional
|
||||
Name of the figure the map should be saved to. If None, the map won't
|
||||
be saved (only displayed). Only used if display is True.
|
||||
Defaults to None.CNRS-Unistra Labo ObsAstroS
|
||||
plots_folder : str, optional
|
||||
Relative (or absolute) filepath to the folder in wich the map will
|
||||
be saved. Not used if savename is None.
|
||||
Defaults to current folder.
|
||||
----------
|
||||
Returns:
|
||||
data_array : numpy.ndarray
|
||||
Array containing the data to study minus the background.
|
||||
headers : header list
|
||||
Updated headers associated with the images in data_array.
|
||||
error_array : numpy.ndarray
|
||||
Array containing the background values associated to the images in
|
||||
data_array.
|
||||
background : numpy.ndarray
|
||||
Array containing the pixel background value for each image in
|
||||
data_array.
|
||||
"""
|
||||
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
|
||||
error_bkg = np.ones(n_data_array.shape)
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
histograms, binning = [], []
|
||||
|
||||
for i, image in enumerate(data):
|
||||
# Compute the Count-rate histogram for the image
|
||||
sky, sky_range = sky_part(image[image > 0.])
|
||||
|
||||
bins, chi2, coeff = bkg_estimate(sky)
|
||||
while bins[-1] < 256:
|
||||
bins, chi2, coeff = bkg_estimate(sky, bins, chi2, coeff)
|
||||
hist, bin_edges = np.histogram(sky, bins=bins[-1])
|
||||
histograms.append(hist)
|
||||
binning.append(bin_centers(bin_edges))
|
||||
chi2, coeff = np.array(chi2), np.array(coeff)
|
||||
weights = 1/chi2**2
|
||||
weights /= weights.sum()
|
||||
|
||||
bkg = np.sum(weights*(coeff[:, 1]+np.abs(coeff[:, 2])*subtract_error))
|
||||
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||
|
||||
# Substract background
|
||||
if subtract_error > 0:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3*bkg)] = 1e-3*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
||||
return n_data_array, n_error_array, headers, background
|
||||
|
||||
|
||||
def bkg_hist(data, error, mask, headers, sub_type=None, subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
----------
|
||||
Inputs:
|
||||
data : numpy.ndarray
|
||||
Array containing the data to study (2D float arrays).
|
||||
error : numpy.ndarray
|
||||
Array of images (2D floats, aligned and of the same shape) containing
|
||||
the error in each pixel of the observation images in data_array.
|
||||
mask : numpy.ndarray
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
Headers associated with the images in data_array.
|
||||
sub_type : str or int, optional
|
||||
If str, statistic rule to be used for the number of bins in counts/s.
|
||||
If int, number of bins for the counts/s histogram.
|
||||
Defaults to "Freedman-Diaconis".
|
||||
subtract_error : float or bool, optional
|
||||
If float, factor to which the estimated background should be multiplied
|
||||
If False the background is not subtracted.
|
||||
Defaults to True (factor = 1.).
|
||||
display : boolean, optional
|
||||
If True, data_array will be displayed with a rectangle around the
|
||||
sub-image selected for background computation.
|
||||
Defaults to False.
|
||||
savename : str, optional
|
||||
Name of the figure the map should be saved to. If None, the map won't
|
||||
be saved (only displayed). Only used if display is True.
|
||||
Defaults to None.
|
||||
plots_folder : str, optional
|
||||
Relative (or absolute) filepath to the folder in wich the map will
|
||||
be saved. Not used if savename is None.
|
||||
Defaults to current folder.
|
||||
----------
|
||||
Returns:
|
||||
data_array : numpy.ndarray
|
||||
Array containing the data to study minus the background.
|
||||
headers : header list
|
||||
Updated headers associated with the images in data_array.
|
||||
error_array : numpy.ndarray
|
||||
Array containing the background values associated to the images in
|
||||
data_array.
|
||||
background : numpy.ndarray
|
||||
Array containing the pixel background value for each image in
|
||||
data_array.
|
||||
"""
|
||||
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
|
||||
error_bkg = np.ones(n_data_array.shape)
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
histograms, binning, coeff = [], [], []
|
||||
|
||||
for i, image in enumerate(data):
|
||||
# Compute the Count-rate histogram for the image
|
||||
n_mask = np.logical_and(mask, image > 0.)
|
||||
if not (sub_type is None):
|
||||
if isinstance(sub_type, int):
|
||||
n_bins = sub_type
|
||||
elif sub_type.lower() in ['sqrt']:
|
||||
n_bins = np.fix(np.sqrt(image[n_mask].size)).astype(int) # Square-root
|
||||
elif sub_type.lower() in ['sturges']:
|
||||
n_bins = np.ceil(np.log2(image[n_mask].size)).astype(int)+1 # Sturges
|
||||
elif sub_type.lower() in ['rice']:
|
||||
n_bins = 2*np.fix(np.power(image[n_mask].size, 1/3)).astype(int) # Rice
|
||||
elif sub_type.lower() in ['scott']:
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(3.5*image[n_mask].std()/np.power(image[n_mask].size, 1/3))).astype(int) # Scott
|
||||
else:
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25])) /
|
||||
np.power(image[n_mask].size, 1/3))).astype(int) # Freedman-Diaconis
|
||||
else:
|
||||
n_bins = np.fix((image[n_mask].max()-image[n_mask].min())/(2*np.subtract(*np.percentile(image[n_mask], [75, 25])) /
|
||||
np.power(image[n_mask].size, 1/3))).astype(int) # Freedman-Diaconis
|
||||
|
||||
hist, bin_edges = np.histogram(np.log(image[n_mask]), bins=n_bins)
|
||||
histograms.append(hist)
|
||||
binning.append(np.exp(bin_centers(bin_edges)))
|
||||
|
||||
# Fit a gaussian to the log-intensity histogram
|
||||
bins_stdev = binning[-1][hist > hist.max()/2.]
|
||||
stdev = bins_stdev[-1]-bins_stdev[0]
|
||||
# p0 = [hist.max(), binning[-1][np.argmax(hist)], stdev, 1e-3, 1e-3, 1e-3, 1e-3]
|
||||
p0 = [hist.max(), binning[-1][np.argmax(hist)], stdev]
|
||||
# popt, pcov = curve_fit(gausspol, binning[-1], hist, p0=p0)
|
||||
popt, pcov = curve_fit(gauss, binning[-1], hist, p0=p0)
|
||||
coeff.append(popt)
|
||||
bkg = popt[1]+np.abs(popt[2])*subtract_error
|
||||
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||
|
||||
# Substract background
|
||||
if subtract_error > 0:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3*bkg)] = 1e-3*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
display_bkg(data, background, std_bkg, headers, histograms=histograms, binning=binning, coeff=coeff, savename=savename, plots_folder=plots_folder)
|
||||
return n_data_array, n_error_array, headers, background
|
||||
|
||||
|
||||
def bkg_mini(data, error, mask, headers, sub_shape=(15, 15), subtract_error=True, display=False, savename=None, plots_folder=""):
|
||||
"""
|
||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||
flux (no source assumption) and define the background on the image by the
|
||||
standard deviation on this sub-image.
|
||||
----------
|
||||
Inputs:
|
||||
data : numpy.ndarray
|
||||
Array containing the data to study (2D float arrays).
|
||||
error : numpy.ndarray
|
||||
Array of images (2D floats, aligned and of the same shape) containing
|
||||
the error in each pixel of the observation images in data_array.
|
||||
mask : numpy.ndarray
|
||||
2D boolean array delimiting the data to work on.
|
||||
headers : header list
|
||||
Headers associated with the images in data_array.
|
||||
sub_shape : tuple, optional
|
||||
Shape of the sub-image to look for. Must be odd.
|
||||
Defaults to 10% of input array.
|
||||
subtract_error : float or bool, optional
|
||||
If float, factor to which the estimated background should be multiplied
|
||||
If False the background is not subtracted.
|
||||
Defaults to True (factor = 1.).
|
||||
display : boolean, optional
|
||||
If True, data_array will be displayed with a rectangle around the
|
||||
sub-image selected for background computation.
|
||||
Defaults to False.
|
||||
savename : str, optional
|
||||
Name of the figure the map should be saved to. If None, the map won't
|
||||
be saved (only displayed). Only used if display is True.
|
||||
Defaults to None.
|
||||
plots_folder : str, optional
|
||||
Relative (or absolute) filepath to the folder in wich the map will
|
||||
be saved. Not used if savename is None.
|
||||
Defaults to current folder.
|
||||
----------
|
||||
Returns:
|
||||
data_array : numpy.ndarray
|
||||
Array containing the data to study minus the background.
|
||||
headers : header list
|
||||
Updated headers associated with the images in data_array.
|
||||
error_array : numpy.ndarray
|
||||
Array containing the background values associated to the images in
|
||||
data_array.
|
||||
background : numpy.ndarray
|
||||
Array containing the pixel background value for each image in
|
||||
data_array.
|
||||
"""
|
||||
sub_shape = np.array(sub_shape)
|
||||
# Make sub_shape of odd values
|
||||
if not (np.all(sub_shape % 2)):
|
||||
sub_shape += 1-sub_shape % 2
|
||||
shape = np.array(data.shape)
|
||||
diff = (sub_shape-1).astype(int)
|
||||
temp = np.zeros((shape[0], shape[1]-diff[0], shape[2]-diff[1]))
|
||||
|
||||
n_data_array, n_error_array = deepcopy(data), deepcopy(error)
|
||||
error_bkg = np.ones(n_data_array.shape)
|
||||
std_bkg = np.zeros((data.shape[0]))
|
||||
background = np.zeros((data.shape[0]))
|
||||
rectangle = []
|
||||
|
||||
for i, image in enumerate(data):
|
||||
# Find the sub-image of smallest integrated flux (suppose no source)
|
||||
# sub-image dominated by background
|
||||
fmax = np.finfo(np.double).max
|
||||
img = deepcopy(image)
|
||||
img[1-mask] = fmax/(diff[0]*diff[1])
|
||||
for r in range(temp.shape[1]):
|
||||
for c in range(temp.shape[2]):
|
||||
temp[i][r, c] = np.where(mask[r, c], img[r:r+diff[0], c:c+diff[1]].sum(), fmax/(diff[0]*diff[1]))
|
||||
|
||||
minima = np.unravel_index(np.argmin(temp.sum(axis=0)), temp.shape[1:])
|
||||
|
||||
for i, image in enumerate(data):
|
||||
rectangle.append([minima[1], minima[0], sub_shape[1], sub_shape[0], 0., 'r'])
|
||||
# Compute error : root mean square of the background
|
||||
sub_image = image[minima[0]:minima[0]+sub_shape[0], minima[1]:minima[1]+sub_shape[1]]
|
||||
# bkg = np.std(sub_image) # Previously computed using standard deviation over the background
|
||||
bkg = np.sqrt(np.sum(sub_image**2)/sub_image.size)*subtract_error if subtract_error > 0 else np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||
error_bkg[i] *= bkg
|
||||
|
||||
n_error_array[i] = np.sqrt(n_error_array[i]**2 + error_bkg[i]**2)
|
||||
|
||||
# Substract background
|
||||
if subtract_error > 0.:
|
||||
n_data_array[i][mask] = n_data_array[i][mask] - bkg
|
||||
n_data_array[i][np.logical_and(mask, n_data_array[i] <= 1e-3*bkg)] = 1e-3*bkg
|
||||
|
||||
std_bkg[i] = image[np.abs(image-bkg)/bkg < 1.].std()
|
||||
background[i] = bkg
|
||||
|
||||
if display:
|
||||
display_bkg(data, background, std_bkg, headers, rectangle=rectangle, savename=savename, plots_folder=plots_folder)
|
||||
return n_data_array, n_error_array, headers, background
|
||||
Reference in New Issue
Block a user