reformat code using python-lsp-ruff
This commit is contained in:
@@ -9,10 +9,12 @@ prototypes :
|
||||
Save computed polarimetry parameters to a single fits file (and return HDUList)
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
from os.path import join as path_join
|
||||
|
||||
import numpy as np
|
||||
from astropy.io import fits
|
||||
from astropy.wcs import WCS
|
||||
|
||||
from .convex_hull import clean_ROI
|
||||
|
||||
|
||||
@@ -38,7 +40,7 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
"""
|
||||
data_array, headers, wcs_array = [], [], []
|
||||
for i in range(len(infiles)):
|
||||
with fits.open(path_join(data_folder, infiles[i]), mode='update') as f:
|
||||
with fits.open(path_join(data_folder, infiles[i]), mode="update") as f:
|
||||
headers.append(f[0].header)
|
||||
data_array.append(f[0].data)
|
||||
wcs_array.append(WCS(header=f[0].header, fobj=f).celestial)
|
||||
@@ -47,53 +49,52 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
|
||||
# Prevent negative count value in imported data
|
||||
for i in range(len(data_array)):
|
||||
data_array[i][data_array[i] < 0.] = 0.
|
||||
data_array[i][data_array[i] < 0.0] = 0.0
|
||||
|
||||
# force WCS to convention PCi_ja unitary, cdelt in deg
|
||||
for wcs, header in zip(wcs_array, headers):
|
||||
new_wcs = wcs.deepcopy()
|
||||
if new_wcs.wcs.has_cd() or (new_wcs.wcs.cdelt[:2] == np.array([1., 1.])).all():
|
||||
if new_wcs.wcs.has_cd() or (new_wcs.wcs.cdelt[:2] == np.array([1.0, 1.0])).all():
|
||||
# Update WCS with relevant information
|
||||
if new_wcs.wcs.has_cd():
|
||||
old_cd = new_wcs.wcs.cd
|
||||
del new_wcs.wcs.cd
|
||||
keys = list(new_wcs.to_header().keys())+['CD1_1', 'CD1_2', 'CD1_3', 'CD2_1', 'CD2_2', 'CD2_3', 'CD3_1', 'CD3_2', 'CD3_3']
|
||||
keys = list(new_wcs.to_header().keys()) + ["CD1_1", "CD1_2", "CD1_3", "CD2_1", "CD2_2", "CD2_3", "CD3_1", "CD3_2", "CD3_3"]
|
||||
for key in keys:
|
||||
header.remove(key, ignore_missing=True)
|
||||
new_cdelt = np.linalg.eig(old_cd)[0]
|
||||
elif (new_wcs.wcs.cdelt == np.array([1., 1.])).all() and \
|
||||
(new_wcs.array_shape in [(512, 512), (1024, 512), (512, 1024), (1024, 1024)]):
|
||||
elif (new_wcs.wcs.cdelt == np.array([1.0, 1.0])).all() and (new_wcs.array_shape in [(512, 512), (1024, 512), (512, 1024), (1024, 1024)]):
|
||||
old_cd = new_wcs.wcs.pc
|
||||
new_wcs.wcs.pc = np.dot(old_cd, np.diag(1./new_cdelt))
|
||||
new_wcs.wcs.pc = np.dot(old_cd, np.diag(1.0 / new_cdelt))
|
||||
new_wcs.wcs.cdelt = new_cdelt
|
||||
for key, val in new_wcs.to_header().items():
|
||||
header[key] = val
|
||||
try:
|
||||
_ = header['ORIENTAT']
|
||||
_ = header["ORIENTAT"]
|
||||
except KeyError:
|
||||
header['ORIENTAT'] = -np.arccos(new_wcs.wcs.pc[0, 0])*180./np.pi
|
||||
header["ORIENTAT"] = -np.arccos(new_wcs.wcs.pc[0, 0]) * 180.0 / np.pi
|
||||
|
||||
# force WCS for POL60 to have same pixel size as POL0 and POL120
|
||||
is_pol60 = np.array([head['filtnam1'].lower() == 'pol60' for head in headers], dtype=bool)
|
||||
is_pol60 = np.array([head["filtnam1"].lower() == "pol60" for head in headers], dtype=bool)
|
||||
cdelt = np.round(np.array([WCS(head).wcs.cdelt[:2] for head in headers]), 14)
|
||||
if np.unique(cdelt[np.logical_not(is_pol60)], axis=0).size != 2:
|
||||
print(np.unique(cdelt[np.logical_not(is_pol60)], axis=0))
|
||||
raise ValueError("Not all images have same pixel size")
|
||||
else:
|
||||
for i in np.arange(len(headers))[is_pol60]:
|
||||
headers[i]['cdelt1'], headers[i]['cdelt2'] = np.unique(cdelt[np.logical_not(is_pol60)], axis=0)[0]
|
||||
headers[i]["cdelt1"], headers[i]["cdelt2"] = np.unique(cdelt[np.logical_not(is_pol60)], axis=0)[0]
|
||||
|
||||
if compute_flux:
|
||||
for i in range(len(infiles)):
|
||||
# Compute the flux in counts/sec
|
||||
data_array[i] /= headers[i]['EXPTIME']
|
||||
data_array[i] /= headers[i]["EXPTIME"]
|
||||
|
||||
return data_array, headers
|
||||
|
||||
|
||||
def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
|
||||
s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="",
|
||||
return_hdul=False):
|
||||
def save_Stokes(
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P, headers, data_mask, filename, data_folder="", return_hdul=False
|
||||
):
|
||||
"""
|
||||
Save computed polarimetry parameters to a single fits file,
|
||||
updating header accordingly.
|
||||
@@ -130,80 +131,87 @@ def save_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, P, debiased_P, s_P,
|
||||
"""
|
||||
# Create new WCS object given the modified images
|
||||
ref_header = headers[0]
|
||||
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
||||
exp_tot = np.array([header["exptime"] for header in headers]).sum()
|
||||
new_wcs = WCS(ref_header).deepcopy()
|
||||
|
||||
if data_mask.shape != (1, 1):
|
||||
vertex = clean_ROI(data_mask)
|
||||
shape = vertex[1::2]-vertex[0::2]
|
||||
shape = vertex[1::2] - vertex[0::2]
|
||||
new_wcs.array_shape = shape
|
||||
new_wcs.wcs.crpix = np.array(new_wcs.wcs.crpix) - vertex[0::-2]
|
||||
|
||||
header = new_wcs.to_header()
|
||||
header['telescop'] = (ref_header['telescop'] if 'TELESCOP' in list(ref_header.keys()) else 'HST', 'telescope used to acquire data')
|
||||
header['instrume'] = (ref_header['instrume'] if 'INSTRUME' in list(ref_header.keys()) else 'FOC', 'identifier for instrument used to acuire data')
|
||||
header['photplam'] = (ref_header['photplam'], 'Pivot Wavelength')
|
||||
header['photflam'] = (ref_header['photflam'], 'Inverse Sensitivity in DN/sec/cm**2/Angst')
|
||||
header['exptot'] = (exp_tot, 'Total exposure time in sec')
|
||||
header['proposid'] = (ref_header['proposid'], 'PEP proposal identifier for observation')
|
||||
header['targname'] = (ref_header['targname'], 'Target name')
|
||||
header['orientat'] = (ref_header['orientat'], 'Angle between North and the y-axis of the image')
|
||||
header['filename'] = (filename, 'Original filename')
|
||||
header['P_int'] = (ref_header['P_int'], 'Integrated polarization degree')
|
||||
header['P_int_err'] = (ref_header['P_int_err'], 'Integrated polarization degree error')
|
||||
header['PA_int'] = (ref_header['PA_int'], 'Integrated polarization angle')
|
||||
header['PA_int_err'] = (ref_header['PA_int_err'], 'Integrated polarization angle error')
|
||||
header["telescop"] = (ref_header["telescop"] if "TELESCOP" in list(ref_header.keys()) else "HST", "telescope used to acquire data")
|
||||
header["instrume"] = (ref_header["instrume"] if "INSTRUME" in list(ref_header.keys()) else "FOC", "identifier for instrument used to acuire data")
|
||||
header["photplam"] = (ref_header["photplam"], "Pivot Wavelength")
|
||||
header["photflam"] = (ref_header["photflam"], "Inverse Sensitivity in DN/sec/cm**2/Angst")
|
||||
header["exptot"] = (exp_tot, "Total exposure time in sec")
|
||||
header["proposid"] = (ref_header["proposid"], "PEP proposal identifier for observation")
|
||||
header["targname"] = (ref_header["targname"], "Target name")
|
||||
header["orientat"] = (ref_header["orientat"], "Angle between North and the y-axis of the image")
|
||||
header["filename"] = (filename, "Original filename")
|
||||
header["P_int"] = (ref_header["P_int"], "Integrated polarization degree")
|
||||
header["P_int_err"] = (ref_header["P_int_err"], "Integrated polarization degree error")
|
||||
header["PA_int"] = (ref_header["PA_int"], "Integrated polarization angle")
|
||||
header["PA_int_err"] = (ref_header["PA_int_err"], "Integrated polarization angle error")
|
||||
|
||||
# Crop Data to mask
|
||||
if data_mask.shape != (1, 1):
|
||||
I_stokes = I_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
Q_stokes = Q_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
U_stokes = U_stokes[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
P = P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
debiased_P = debiased_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_P = s_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_P_P = s_P_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
PA = PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_PA = s_PA[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
s_PA_P = s_PA_P[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
I_stokes = I_stokes[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
Q_stokes = Q_stokes[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
U_stokes = U_stokes[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
P = P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
debiased_P = debiased_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
s_P = s_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
s_P_P = s_P_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
PA = PA[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
s_PA = s_PA[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
s_PA_P = s_PA_P[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
|
||||
new_Stokes_cov = np.zeros((*Stokes_cov.shape[:-2], *shape[::-1]))
|
||||
for i in range(3):
|
||||
for j in range(3):
|
||||
Stokes_cov[i, j][(1-data_mask).astype(bool)] = 0.
|
||||
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
Stokes_cov[i, j][(1 - data_mask).astype(bool)] = 0.0
|
||||
new_Stokes_cov[i, j] = Stokes_cov[i, j][vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
Stokes_cov = new_Stokes_cov
|
||||
|
||||
data_mask = data_mask[vertex[2]:vertex[3], vertex[0]:vertex[1]]
|
||||
data_mask = data_mask[vertex[2] : vertex[3], vertex[0] : vertex[1]]
|
||||
data_mask = data_mask.astype(float, copy=False)
|
||||
|
||||
# Create HDUList object
|
||||
hdul = fits.HDUList([])
|
||||
|
||||
# Add I_stokes as PrimaryHDU
|
||||
header['datatype'] = ('I_stokes', 'type of data stored in the HDU')
|
||||
I_stokes[(1-data_mask).astype(bool)] = 0.
|
||||
header["datatype"] = ("I_stokes", "type of data stored in the HDU")
|
||||
I_stokes[(1 - data_mask).astype(bool)] = 0.0
|
||||
primary_hdu = fits.PrimaryHDU(data=I_stokes, header=header)
|
||||
primary_hdu.name = 'I_stokes'
|
||||
primary_hdu.name = "I_stokes"
|
||||
hdul.append(primary_hdu)
|
||||
|
||||
# Add Q, U, Stokes_cov, P, s_P, PA, s_PA to the HDUList
|
||||
for data, name in [[Q_stokes, 'Q_stokes'], [U_stokes, 'U_stokes'],
|
||||
[Stokes_cov, 'IQU_cov_matrix'], [P, 'Pol_deg'],
|
||||
[debiased_P, 'Pol_deg_debiased'], [s_P, 'Pol_deg_err'],
|
||||
[s_P_P, 'Pol_deg_err_Poisson_noise'], [PA, 'Pol_ang'],
|
||||
[s_PA, 'Pol_ang_err'], [s_PA_P, 'Pol_ang_err_Poisson_noise'],
|
||||
[data_mask, 'Data_mask']]:
|
||||
for data, name in [
|
||||
[Q_stokes, "Q_stokes"],
|
||||
[U_stokes, "U_stokes"],
|
||||
[Stokes_cov, "IQU_cov_matrix"],
|
||||
[P, "Pol_deg"],
|
||||
[debiased_P, "Pol_deg_debiased"],
|
||||
[s_P, "Pol_deg_err"],
|
||||
[s_P_P, "Pol_deg_err_Poisson_noise"],
|
||||
[PA, "Pol_ang"],
|
||||
[s_PA, "Pol_ang_err"],
|
||||
[s_PA_P, "Pol_ang_err_Poisson_noise"],
|
||||
[data_mask, "Data_mask"],
|
||||
]:
|
||||
hdu_header = header.copy()
|
||||
hdu_header['datatype'] = name
|
||||
if not name == 'IQU_cov_matrix':
|
||||
data[(1-data_mask).astype(bool)] = 0.
|
||||
hdu_header["datatype"] = name
|
||||
if not name == "IQU_cov_matrix":
|
||||
data[(1 - data_mask).astype(bool)] = 0.0
|
||||
hdu = fits.ImageHDU(data=data, header=hdu_header)
|
||||
hdu.name = name
|
||||
hdul.append(hdu)
|
||||
|
||||
# Save fits file to designated filepath
|
||||
hdul.writeto(path_join(data_folder, filename+".fits"), overwrite=True)
|
||||
hdul.writeto(path_join(data_folder, filename + ".fits"), overwrite=True)
|
||||
|
||||
if return_hdul:
|
||||
return hdul
|
||||
|
||||
Reference in New Issue
Block a user