diff --git a/package/lib/plots.py b/package/lib/plots.py index c614263..c21700e 100755 --- a/package/lib/plots.py +++ b/package/lib/plots.py @@ -481,9 +481,9 @@ def polarization_map( # Display I_stokes signal-to-noise map display = "snri" vmin, vmax = 0.0, np.max(SNRi[np.isfinite(SNRi)]) - if vmax * 0.99 > SNRi_cut: + if vmax * 0.99 > SNRi_cut + 3: im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect="equal", cmap=kwargs["cmap"]) - levelsSNRi = np.linspace(SNRi_cut, vmax * 0.99, 5).astype(int) + levelsSNRi = np.linspace(SNRi_cut, vmax * 0.99, 3).astype(int) print("SNRi contour levels : ", levelsSNRi) ax.contour(SNRi, levels=levelsSNRi, colors="grey", linewidths=0.5) else: @@ -3346,9 +3346,7 @@ class pol_map(object): + 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err) ) ) - mask = P_cut**2 > P_cut_stat_err - debiased_P_cut = np.zeros(P_cut.shape) - debiased_P_cut[mask] = np.sqrt(P_cut[mask] ** 2 - P_cut_stat_err[mask] ** 2) + debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0 PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut)) PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt( @@ -3440,9 +3438,7 @@ class pol_map(object): + 1.0 / (I_cut**2 * P_cut**4) * (Q_cut**2 * Q_cut_stat_err + U_cut**2 * U_cut_stat_err + 2.0 * Q_cut * U_cut * QU_cut_stat_err) ) ) - mask = P_cut**2 > P_cut_stat_err - debiased_P_cut = np.zeros(P_cut.shape) - debiased_P_cut[mask] = np.sqrt(P_cut[mask] ** 2 - P_cut_stat_err[mask] ** 2) + debiased_P_cut = np.sqrt(P_cut**2 - P_cut_stat_err**2) if P_cut**2 > P_cut_stat_err**2 else 0.0 PA_cut = princ_angle((90.0 / np.pi) * np.arctan2(U_cut, Q_cut)) PA_cut_err = (90.0 / (np.pi * (Q_cut**2 + U_cut**2))) * np.sqrt(