move alignement before rebinning, before background computation
This commit is contained in:
@@ -1109,6 +1109,8 @@ class pol_map(object):
|
||||
self.ax.reset_wcs(self.wcs)
|
||||
self.ax_cosmetics()
|
||||
self.display()
|
||||
self.ax.set_xlim(0,self.I.shape[1])
|
||||
self.ax.set_ylim(0,self.I.shape[0])
|
||||
self.pol_vector()
|
||||
else:
|
||||
self.cropped = True
|
||||
@@ -1229,26 +1231,31 @@ class pol_map(object):
|
||||
def d_tf(event):
|
||||
self.display_selection = 'total_flux'
|
||||
self.display()
|
||||
self.pol_int()
|
||||
b_tf.on_clicked(d_tf)
|
||||
|
||||
def d_pf(event):
|
||||
self.display_selection = 'pol_flux'
|
||||
self.display()
|
||||
self.pol_int()
|
||||
b_pf.on_clicked(d_pf)
|
||||
|
||||
def d_p(event):
|
||||
self.display_selection = 'pol_deg'
|
||||
self.display()
|
||||
self.pol_int()
|
||||
b_p.on_clicked(d_p)
|
||||
|
||||
def d_snri(event):
|
||||
self.display_selection = 'snri'
|
||||
self.display()
|
||||
self.pol_int()
|
||||
b_snri.on_clicked(d_snri)
|
||||
|
||||
def d_snrp(event):
|
||||
self.display_selection = 'snrp'
|
||||
self.display()
|
||||
self.pol_int()
|
||||
b_snrp.on_clicked(d_snrp)
|
||||
|
||||
plt.show()
|
||||
@@ -1359,8 +1366,6 @@ class pol_map(object):
|
||||
if hasattr(self, 'im'):
|
||||
self.im.remove()
|
||||
self.im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='auto', cmap='inferno')
|
||||
ax.set_xlim(0,self.data.shape[1])
|
||||
ax.set_ylim(0,self.data.shape[0])
|
||||
self.cbar = plt.colorbar(self.im, cax=self.cbar_ax, label=label)
|
||||
fig.canvas.draw_idle()
|
||||
return self.im
|
||||
@@ -1412,12 +1417,12 @@ class pol_map(object):
|
||||
I_reg = self.I[self.region].sum()
|
||||
Q_reg = self.Q[self.region].sum()
|
||||
U_reg = self.U[self.region].sum()
|
||||
I_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_I[self.region]**2))
|
||||
Q_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_Q[self.region]**2))
|
||||
U_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_U[self.region]**2))
|
||||
IQ_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_IQ[self.region]**2))
|
||||
IU_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_IU[self.region]**2))
|
||||
QU_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_QU[self.region]**2))
|
||||
I_reg_err = np.sqrt(np.sum(s_I[self.region]**2))
|
||||
Q_reg_err = np.sqrt(np.sum(s_Q[self.region]**2))
|
||||
U_reg_err = np.sqrt(np.sum(s_U[self.region]**2))
|
||||
IQ_reg_err = np.sqrt(np.sum(s_IQ[self.region]**2))
|
||||
IU_reg_err = np.sqrt(np.sum(s_IU[self.region]**2))
|
||||
QU_reg_err = np.sqrt(np.sum(s_QU[self.region]**2))
|
||||
|
||||
P_reg = np.sqrt(Q_reg**2+U_reg**2)/I_reg
|
||||
P_reg_err = np.sqrt((Q_reg**2*Q_reg_err**2 + U_reg**2*U_reg_err**2 + 2.*Q_reg*U_reg*QU_reg_err)/(Q_reg**2 + U_reg**2) + ((Q_reg/I_reg)**2 + (U_reg/I_reg)**2)*I_reg_err**2 - 2.*(Q_reg/I_reg)*IQ_reg_err - 2.*(U_reg/I_reg)*IU_reg_err)/I_reg
|
||||
|
||||
Reference in New Issue
Block a user