Test reduction and error from ELR propositions
This commit is contained in:
@@ -660,8 +660,8 @@ def align_data(data_array, error_array=None, upsample_factor=1., ref_data=None,
|
||||
full_array = np.concatenate((data_array,[ref_data]),axis=0)
|
||||
err_array = np.concatenate((error_array,[np.zeros(ref_data.shape)]),axis=0)
|
||||
|
||||
full_array, err_array = crop_array(full_array, err_array, step=5,
|
||||
inside=False)
|
||||
#full_array, err_array = crop_array(full_array, err_array, step=5,
|
||||
# inside=False)
|
||||
|
||||
data_array, ref_data = full_array[:-1], full_array[-1]
|
||||
error_array = err_array[:-1]
|
||||
@@ -1083,9 +1083,10 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
#Compute the total exposure time so that
|
||||
#I_stokes*exp_tot = N_tot the total number of events
|
||||
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
||||
N_obs = I_stokes/np.array([header['photflam'] for header in headers]).mean()*exp_tot
|
||||
|
||||
#Errors on P, PA supposing Poisson noise
|
||||
s_P_P = np.sqrt(2.)*(I_stokes*exp_tot)**(-0.5)
|
||||
s_P_P = np.sqrt(2.)*(N_obs)**(-0.5)*100.
|
||||
s_PA_P = s_P_P/(2.*P/100.)*180./np.pi
|
||||
|
||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||
|
||||
Reference in New Issue
Block a user