add data rotation (instead of stokes rotation) and add sentinels
This commit is contained in:
@@ -16,20 +16,20 @@ import lib.plots as proj_plots #Functions for plotting data
|
||||
def main():
|
||||
##### User inputs
|
||||
## Input and output locations
|
||||
globals()['data_folder'] = "../data/NGC1068_x274020/"
|
||||
infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
||||
'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
||||
'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
||||
globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
||||
# globals()['data_folder'] = "../data/NGC1068_x274020/"
|
||||
# infiles = ['x274020at.c0f.fits','x274020bt.c0f.fits','x274020ct.c0f.fits',
|
||||
# 'x274020dt.c0f.fits','x274020et.c0f.fits','x274020ft.c0f.fits',
|
||||
# 'x274020gt.c0f.fits','x274020ht.c0f.fits','x274020it.c0f.fits']
|
||||
# globals()['plots_folder'] = "../plots/NGC1068_x274020/"
|
||||
|
||||
# globals()['data_folder'] = "../data/NGC1068_x14w010/"
|
||||
# infiles = ['x14w0101t_c0f.fits','x14w0102t_c0f.fits','x14w0103t_c0f.fits',
|
||||
# 'x14w0104t_c0f.fits','x14w0105p_c0f.fits','x14w0106t_c0f.fits']
|
||||
# globals()['plots_folder'] = "../plots/NGC1068_x14w010/"
|
||||
|
||||
# globals()['data_folder'] = "../data/3C405_x136060/"
|
||||
# infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
|
||||
# globals()['plots_folder'] = "../plots/3C405_x136060/"
|
||||
globals()['data_folder'] = "../data/3C405_x136060/"
|
||||
infiles = ['x1360601t_c0f.fits','x1360602t_c0f.fits','x1360603t_c0f.fits']
|
||||
globals()['plots_folder'] = "../plots/3C405_x136060/"
|
||||
|
||||
# globals()['data_folder'] = "../data/CygnusA_x43w0/"
|
||||
# infiles = ['x43w0101r_c0f.fits', 'x43w0102r_c0f.fits', 'x43w0103r_c0f.fits',
|
||||
@@ -87,25 +87,26 @@ def main():
|
||||
iterations = 10
|
||||
# Error estimation
|
||||
error_sub_shape = (75,75)
|
||||
display_error = False
|
||||
display_error = True
|
||||
# Data binning
|
||||
rebin = True
|
||||
if rebin:
|
||||
pxsize = 0.10
|
||||
pxsize = 0.50
|
||||
px_scale = 'arcsec' #pixel or arcsec
|
||||
rebin_operation = 'sum' #sum or average
|
||||
# Alignement
|
||||
align_center = 'image' #If None will align image to image center
|
||||
display_data = False
|
||||
display_data = True
|
||||
# Smoothing
|
||||
smoothing_function = 'combine' #gaussian_after, gaussian or combine
|
||||
smoothing_FWHM = 0.20 #If None, no smoothing is done
|
||||
smoothing_FWHM = None #If None, no smoothing is done
|
||||
smoothing_scale = 'arcsec' #pixel or arcsec
|
||||
# Rotation
|
||||
rotate = True #rotation to North convention can give erroneous results
|
||||
rotate_stokes = False #rotation to North convention can give erroneous results
|
||||
rotate_data = False #rotation to North convention can give erroneous results
|
||||
# Polarization map output
|
||||
figname = 'NGC1068_FOC' #target/intrument name
|
||||
figtype = '_combine_FWHM020_rot' #additionnal informations
|
||||
figname = '3C405_FOC' #target/intrument name
|
||||
figtype = '' #additionnal informations
|
||||
SNRp_cut = 3 #P measurments with SNR>3
|
||||
SNRi_cut = 30 #I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||
step_vec = 1 #plot all vectors in the array. if step_vec = 2, then every other vector will be plotted
|
||||
@@ -114,19 +115,40 @@ def main():
|
||||
## Step 1:
|
||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||
data_array, headers = proj_fits.get_obs_data(infiles, data_folder=data_folder, compute_flux=True)
|
||||
for data in data_array:
|
||||
if (data < 0.).any():
|
||||
print("ETAPE 1 : ", data)
|
||||
# Crop data to remove outside blank margins.
|
||||
data_array, error_array = proj_red.crop_array(data_array, step=5, null_val=0., inside=True)
|
||||
for data in data_array:
|
||||
if (data < 0.).any():
|
||||
print("ETAPE 2 : ", data)
|
||||
# Deconvolve data using Richardson-Lucy iterative algorithm with a gaussian PSF of given FWHM.
|
||||
if deconvolve:
|
||||
data_array = proj_red.deconvolve_array(data_array, headers, psf=psf, FWHM=psf_FWHM, scale=psf_scale, shape=psf_shape, iterations=iterations)
|
||||
# Estimate error from data background, estimated from sub-image of desired sub_shape.
|
||||
data_array, error_array = proj_red.get_error(data_array, sub_shape=error_sub_shape, display=display_error, headers=headers, savename=figname+"_errors", plots_folder=plots_folder)
|
||||
for data in data_array:
|
||||
if (data < 0.).any():
|
||||
print("ETAPE 3 : ", data)
|
||||
# Rebin data to desired pixel size.
|
||||
if rebin:
|
||||
data_array, error_array, headers, Dxy = proj_red.rebin_array(data_array, error_array, headers, pxsize=pxsize, scale=px_scale, operation=rebin_operation)
|
||||
for data in data_array:
|
||||
if (data < 0.).any():
|
||||
print("ETAPE 4 : ", data)
|
||||
#Align and rescale images with oversampling.
|
||||
data_array, error_array = proj_red.align_data(data_array, error_array, upsample_factor=int(Dxy.min()), ref_center=align_center, return_shifts=False)
|
||||
|
||||
for data in data_array:
|
||||
if (data < 0.).any():
|
||||
print("ETAPE 5 : ", data)
|
||||
# Rotate data to have North up
|
||||
ref_header = copy.deepcopy(headers[0])
|
||||
if rotate_data:
|
||||
data_array, error_array, headers = proj_red.rotate_data(data_array, error_array, headers, -ref_header['orientat'])
|
||||
for data in data_array:
|
||||
if (data < 0.).any():
|
||||
print("ETAPE 6 : ", data)
|
||||
#Plot array for checking output
|
||||
if display_data:
|
||||
proj_plots.plot_obs(data_array, headers, vmin=data_array.min(), vmax=data_array.max(), savename=figname+"_center_"+align_center, plots_folder=plots_folder)
|
||||
@@ -141,7 +163,7 @@ def main():
|
||||
|
||||
## Step 3:
|
||||
# Rotate images to have North up
|
||||
if rotate:
|
||||
if rotate_stokes:
|
||||
ref_header = copy.deepcopy(headers[0])
|
||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, headers = proj_red.rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, -ref_header['orientat'])
|
||||
# Compute polarimetric parameters (polarization degree and angle).
|
||||
|
||||
@@ -41,6 +41,10 @@ def get_obs_data(infiles, data_folder="", compute_flux=False):
|
||||
data_array.append(f[0].data)
|
||||
data_array = np.array(data_array)
|
||||
|
||||
# Prevent negative count value in imported data
|
||||
for i in range(len(data_array)):
|
||||
data_array[i][data_array[i] < 0.] = 0.
|
||||
|
||||
if compute_flux:
|
||||
for i in range(len(infiles)):
|
||||
# Compute the flux in counts/sec
|
||||
|
||||
@@ -134,7 +134,7 @@ def polarization_map(Stokes, SNRp_cut=3., SNRi_cut=30., step_vec=1,
|
||||
pang_err = Stokes[np.argmax([Stokes[i].header['datatype']=='Pol_ang_err' for i in range(len(Stokes))])]
|
||||
|
||||
pivot_wav = Stokes[0].header['photplam']
|
||||
convert_flux = Stokes[0].header['photflam']
|
||||
convert_flux = 1.#Stokes[0].header['photflam']
|
||||
wcs = WCS(Stokes[0]).deepcopy()
|
||||
|
||||
#Compute SNR and apply cuts
|
||||
|
||||
@@ -391,7 +391,10 @@ def get_error(data_array, sub_shape=(15,15), display=False, headers=None,
|
||||
error = np.sqrt(np.sum(sub_image**2)/sub_image.size)
|
||||
error_array[i] *= error
|
||||
background[i] = sub_image.sum()
|
||||
data_array[i] = np.abs(data_array[i] - sub_image.mean())
|
||||
data_array[i] = data_array[i] - sub_image.mean()
|
||||
data_array[i][data_array[i] < 0.] = 0.
|
||||
if (data_array[i] < 0.).any():
|
||||
print(data_array[i])
|
||||
|
||||
if display:
|
||||
|
||||
@@ -651,7 +654,7 @@ def align_data(data_array, error_array=None, upsample_factor=1., ref_data=None,
|
||||
shifts, errors = [], []
|
||||
for i,image in enumerate(data_array):
|
||||
# Initialize rescaled images to background values
|
||||
rescaled_image[i] *= 0.1*background[i]
|
||||
rescaled_image[i] *= 0.*background[i]
|
||||
rescaled_error[i] *= background[i]
|
||||
# Get shifts and error by cross-correlation to ref_data
|
||||
shift, error, phase_diff = phase_cross_correlation(ref_data, image,
|
||||
@@ -664,9 +667,11 @@ def align_data(data_array, error_array=None, upsample_factor=1., ref_data=None,
|
||||
rescaled_error[i,res_shift[0]:res_shift[0]+shape[1],
|
||||
res_shift[1]:res_shift[1]+shape[2]] = copy.deepcopy(error_array[i])
|
||||
# Shift images to align
|
||||
rescaled_image[i] = sc_shift(rescaled_image[i], shift, cval=0.1*background[i])
|
||||
rescaled_image[i] = sc_shift(rescaled_image[i], shift, cval=0.)
|
||||
rescaled_error[i] = sc_shift(rescaled_error[i], shift, cval=background[i])
|
||||
|
||||
rescaled_image[i][rescaled_image[i] < 0.] = 0.
|
||||
|
||||
shifts.append(shift)
|
||||
errors.append(error)
|
||||
|
||||
@@ -867,15 +872,27 @@ def polarizer_avg(data_array, error_array, headers, FWHM=None, scale='pixel',
|
||||
|
||||
else:
|
||||
# Average on each polarization filter.
|
||||
pol0 = pol0_array.mean(axis=0)
|
||||
pol60 = pol60_array.mean(axis=0)
|
||||
pol120 = pol120_array.mean(axis=0)
|
||||
#pol0 = pol0_array.mean(axis=0)
|
||||
#pol60 = pol60_array.mean(axis=0)
|
||||
#pol120 = pol120_array.mean(axis=0)
|
||||
# Sum on each polarization filter.
|
||||
print("Exposure time for polarizer 0°/60°/120° : ",
|
||||
np.sum([header['exptime'] for header in headers0]),
|
||||
np.sum([header['exptime'] for header in headers60]),
|
||||
np.sum([header['exptime'] for header in headers120]))
|
||||
pol0 = pol0_array.sum(axis=0)
|
||||
pol60 = pol60_array.sum(axis=0)
|
||||
pol120 = pol120_array.sum(axis=0)
|
||||
pol_array = np.array([pol0, pol60, pol120])
|
||||
|
||||
|
||||
# Propagate uncertainties quadratically
|
||||
err0 = np.mean(err0_array,axis=0)/np.sqrt(err0_array.shape[0])
|
||||
err60 = np.mean(err60_array,axis=0)/np.sqrt(err60_array.shape[0])
|
||||
err120 = np.mean(err120_array,axis=0)/np.sqrt(err120_array.shape[0])
|
||||
#err0 = np.mean(err0_array,axis=0)/np.sqrt(err0_array.shape[0])
|
||||
#err60 = np.mean(err60_array,axis=0)/np.sqrt(err60_array.shape[0])
|
||||
#err120 = np.mean(err120_array,axis=0)/np.sqrt(err120_array.shape[0])
|
||||
err0 = np.sum(err0_array,axis=0)*np.sqrt(err0_array.shape[0])
|
||||
err60 = np.sum(err60_array,axis=0)*np.sqrt(err60_array.shape[0])
|
||||
err120 = np.sum(err120_array,axis=0)*np.sqrt(err120_array.shape[0])
|
||||
polerr_array = np.array([err0, err60, err120])
|
||||
|
||||
# Update headers
|
||||
@@ -886,8 +903,9 @@ def polarizer_avg(data_array, error_array, headers, FWHM=None, scale='pixel',
|
||||
list_head = headers60
|
||||
else:
|
||||
list_head = headers120
|
||||
header['exptime'] = np.mean([head['exptime'] for head in list_head])/len(list_head)
|
||||
header['exptime'] = np.sum([head['exptime'] for head in list_head])/len(list_head)
|
||||
headers_array = [headers0[0], headers60[0], headers120[0]]
|
||||
|
||||
if not(FWHM is None) and (smoothing.lower() in ['gaussian','gauss']):
|
||||
# Smooth by convoluting with a gaussian each polX image.
|
||||
pol_array, polerr_array = smooth_data(pol_array, polerr_array,
|
||||
@@ -976,11 +994,34 @@ def compute_Stokes(data_array, error_array, headers, FWHM=None,
|
||||
FWHM=FWHM, scale=scale, smoothing=smoothing)
|
||||
pol0, pol60, pol120 = pol_array
|
||||
|
||||
if (pol0 < 0.).any() or (pol60 < 0.).any() or (pol120 < 0.).any():
|
||||
print("WARNING : Negative value in polarizer array.")
|
||||
|
||||
#Stokes parameters
|
||||
I_stokes = (2./3.)*(pol0 + pol60 + pol120)
|
||||
Q_stokes = (2./3.)*(2*pol0 - pol60 - pol120)
|
||||
U_stokes = (2./np.sqrt(3.))*(pol60 - pol120)
|
||||
|
||||
#Remove nan
|
||||
I_stokes[np.isnan(I_stokes)]=0.
|
||||
Q_stokes[np.isnan(Q_stokes)]=0.
|
||||
Q_stokes[I_stokes == 0.]=0.
|
||||
U_stokes[np.isnan(U_stokes)]=0.
|
||||
U_stokes[I_stokes == 0.]=0.
|
||||
|
||||
mask = (Q_stokes**2 + U_stokes**2) > I_stokes**2
|
||||
if mask.any():
|
||||
print("WARNING : I_pol > I_stokes : ", len(I_stokes[mask]))
|
||||
|
||||
plt.imshow(np.sqrt(Q_stokes**2+U_stokes**2)/I_stokes*mask, origin='lower')
|
||||
plt.colorbar()
|
||||
plt.title(r"$I_{pol}/I_{tot}$")
|
||||
plt.show()
|
||||
|
||||
#I_stokes[mask]=0.
|
||||
Q_stokes[mask]=0.
|
||||
U_stokes[mask]=0.
|
||||
|
||||
#Stokes covariance matrix
|
||||
Stokes_cov = np.zeros((3,3,I_stokes.shape[0],I_stokes.shape[1]))
|
||||
Stokes_cov[0,0] = (4./9.)*(pol_cov[0,0]+pol_cov[1,1]+pol_cov[2,2]) + (8./9.)*(pol_cov[0,1]+pol_cov[0,2]+pol_cov[1,2])
|
||||
@@ -990,11 +1031,6 @@ def compute_Stokes(data_array, error_array, headers, FWHM=None,
|
||||
Stokes_cov[0,2] = Stokes_cov[2,0] = (4./9.)*(2.*pol_cov[0,0]-pol_cov[1,1]-pol_cov[2,2]+pol_cov[0,1]+pol_cov[0,2]-2.*pol_cov[1,2])
|
||||
Stokes_cov[1,2] = Stokes_cov[2,1] = (4./(3.*np.sqrt(3.)))*(-pol_cov[1,1]+pol_cov[2,2]+2.*pol_cov[0,1]-2.*pol_cov[0,2])
|
||||
|
||||
#Remove nan
|
||||
I_stokes[np.isnan(I_stokes)]=0.
|
||||
Q_stokes[np.isnan(Q_stokes)]=0.
|
||||
U_stokes[np.isnan(U_stokes)]=0.
|
||||
|
||||
if not(FWHM is None) and (smoothing.lower() in ['gaussian_after','gauss_after']):
|
||||
Stokes_array = np.array([I_stokes, Q_stokes, U_stokes])
|
||||
Stokes_error = np.array([np.sqrt(Stokes_cov[i,i]) for i in range(3)])
|
||||
@@ -1053,10 +1089,11 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
#Polarization degree and angle computation
|
||||
I_pol = np.sqrt(Q_stokes**2 + U_stokes**2)
|
||||
P = I_pol/I_stokes*100.
|
||||
P[I_stokes <= 0.] = 0.
|
||||
PA = (90./np.pi)*np.arctan2(U_stokes,Q_stokes)+90
|
||||
|
||||
if (np.isfinite(P)>100.).any():
|
||||
print("WARNING : found pixels for which P > 100%")
|
||||
if (P>100.).any():
|
||||
print("WARNING : found pixels for which P > 100%", len(P[P>100.]))
|
||||
|
||||
#Associated errors
|
||||
s_P = (100./I_stokes)*np.sqrt((Q_stokes**2*Stokes_cov[1,1] + U_stokes**2*Stokes_cov[2,2] + 2.*Q_stokes*U_stokes*Stokes_cov[1,2])/(Q_stokes**2 + U_stokes**2) + ((Q_stokes/I_stokes)**2 + (U_stokes/I_stokes)**2)*Stokes_cov[0,0] - 2.*(Q_stokes/I_stokes)*Stokes_cov[0,1] - 2.*(U_stokes/I_stokes)*Stokes_cov[0,2])
|
||||
@@ -1065,18 +1102,90 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
|
||||
debiased_P = np.sqrt(P**2 - s_P**2)
|
||||
|
||||
if (debiased_P>100.).any():
|
||||
print("WARNING : found pixels for which debiased_P > 100%", len(debiased_P[debiased_P>100.]))
|
||||
|
||||
#Compute the total exposure time so that
|
||||
#I_stokes*exp_tot = N_tot the total number of events
|
||||
exp_tot = np.array([header['exptime'] for header in headers]).sum()
|
||||
N_obs = I_stokes/np.array([header['photflam'] for header in headers]).mean()*exp_tot
|
||||
N_obs = I_stokes*exp_tot
|
||||
|
||||
#Errors on P, PA supposing Poisson noise
|
||||
s_P_P = np.sqrt(2.)*(N_obs)**(-0.5)*100.
|
||||
s_P_P = np.sqrt(2.)/np.sqrt(N_obs)*100.
|
||||
s_PA_P = s_P_P/(2.*P/100.)*180./np.pi
|
||||
|
||||
return P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||
|
||||
|
||||
def rotate_data(data_array, error_array, headers, ang):
|
||||
"""
|
||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||
matrix to rotate Q, U of a given angle in degrees and update header
|
||||
orientation keyword.
|
||||
----------
|
||||
Inputs:
|
||||
data_array : numpy.ndarray
|
||||
Array of images (2D floats) to be rotated by angle ang.
|
||||
error_array : numpy.ndarray
|
||||
Array of error associated to images in data_array.
|
||||
headers : header list
|
||||
List of headers corresponding to the reduced images.
|
||||
ang : float
|
||||
Rotation angle (in degrees) that should be applied to the Stokes
|
||||
parameters
|
||||
----------
|
||||
Returns:
|
||||
new_data_array : numpy.ndarray
|
||||
Updated array containing the rotated images.
|
||||
new_error_array : numpy.ndarray
|
||||
Updated array containing the rotated errors.
|
||||
new_headers : header list
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
for the new orientation angle.
|
||||
"""
|
||||
#Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
||||
alpha = ang*np.pi/180.
|
||||
|
||||
#Rotate original images using scipy.ndimage.rotate
|
||||
new_data_array = []
|
||||
new_error_array = []
|
||||
for i in range(len(data_array)):
|
||||
new_data_array.append(sc_rotate(data_array[i], ang, reshape=False,
|
||||
cval=0.))
|
||||
new_error_array.append(sc_rotate(error_array[i], ang, reshape=False,
|
||||
cval=error_array.mean()))
|
||||
new_data_array = np.array(new_data_array)
|
||||
new_error_array = np.array(new_error_array)
|
||||
|
||||
for i in range(len(new_data_array)):
|
||||
new_data_array[i][new_data_array[i] < 0.] = 0.
|
||||
|
||||
#Update headers to new angle
|
||||
new_headers = []
|
||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)],
|
||||
[np.sin(-alpha), np.cos(-alpha)]])
|
||||
for header in headers:
|
||||
new_header = copy.deepcopy(header)
|
||||
new_header['orientat'] = header['orientat'] + ang
|
||||
|
||||
new_wcs = WCS(header).deepcopy()
|
||||
if new_wcs.wcs.has_cd(): # CD matrix
|
||||
del new_wcs.wcs.cd
|
||||
keys = ['CD1_1','CD1_2','CD2_1','CD2_2']
|
||||
for key in keys:
|
||||
new_header.remove(key, ignore_missing=True)
|
||||
new_wcs.wcs.cdelt = 3600.*np.sqrt(np.sum(new_wcs.wcs.get_pc()**2,axis=1))
|
||||
elif new_wcs.wcs.has_pc(): # PC matrix + CDELT
|
||||
newpc = np.dot(mrot, new_wcs.wcs.get_pc())
|
||||
new_wcs.wcs.pc = newpc
|
||||
new_wcs.wcs.set()
|
||||
new_header.update(new_wcs.to_header())
|
||||
|
||||
new_headers.append(new_header)
|
||||
|
||||
return new_data_array, new_error_array, new_headers
|
||||
|
||||
|
||||
def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang):
|
||||
"""
|
||||
Use scipy.ndimage.rotate to rotate I_stokes to an angle, and a rotation
|
||||
@@ -1133,15 +1242,15 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang):
|
||||
|
||||
#Rotate original images using scipy.ndimage.rotate
|
||||
new_I_stokes = sc_rotate(new_I_stokes, ang, reshape=False,
|
||||
cval=0.10*np.sqrt(new_Stokes_cov[0,0][0,0]))
|
||||
cval=0.0*np.sqrt(new_Stokes_cov[0,0][0,0]))
|
||||
new_Q_stokes = sc_rotate(new_Q_stokes, ang, reshape=False,
|
||||
cval=0.10*np.sqrt(new_Stokes_cov[1,1][0,0]))
|
||||
cval=0.0*np.sqrt(new_Stokes_cov[1,1][0,0]))
|
||||
new_U_stokes = sc_rotate(new_U_stokes, ang, reshape=False,
|
||||
cval=0.10*np.sqrt(new_Stokes_cov[2,2][0,0]))
|
||||
cval=0.0*np.sqrt(new_Stokes_cov[2,2][0,0]))
|
||||
for i in range(3):
|
||||
for j in range(3):
|
||||
new_Stokes_cov[i,j] = sc_rotate(new_Stokes_cov[i,j], ang, reshape=False,
|
||||
cval=0.10*new_Stokes_cov[i,j].mean())
|
||||
cval=0.0*new_Stokes_cov[i,j].mean())
|
||||
|
||||
#Update headers to new angle
|
||||
new_headers = []
|
||||
@@ -1153,11 +1262,11 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers, ang):
|
||||
|
||||
new_wcs = WCS(header).deepcopy()
|
||||
if new_wcs.wcs.has_cd(): # CD matrix
|
||||
del w.wcs.cd
|
||||
del new_wcs.wcs.cd
|
||||
keys = ['CD1_1','CD1_2','CD2_1','CD2_2']
|
||||
for key in keys:
|
||||
new_header.remove(key, ignore_missing=True)
|
||||
w.wcs.cdelt = 3600.*np.sqrt(np.sum(w.wcs.get_pc()**2,axis=1))
|
||||
new_wcs.wcs.cdelt = 3600.*np.sqrt(np.sum(w.wcs.get_pc()**2,axis=1))
|
||||
elif new_wcs.wcs.has_pc(): # PC matrix + CDELT
|
||||
newpc = np.dot(mrot, new_wcs.wcs.get_pc())
|
||||
new_wcs.wcs.pc = newpc
|
||||
|
||||
Reference in New Issue
Block a user