better plots and filenames
This commit is contained in:
@@ -17,7 +17,7 @@ from lib.utils import princ_angle, sci_not
|
|||||||
from matplotlib.colors import LogNorm
|
from matplotlib.colors import LogNorm
|
||||||
|
|
||||||
|
|
||||||
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False, **kwargs):
|
def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=False, interactive=False):
|
||||||
# Reduction parameters
|
# Reduction parameters
|
||||||
# Deconvolution
|
# Deconvolution
|
||||||
deconvolve = False
|
deconvolve = False
|
||||||
@@ -36,12 +36,12 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
|
|
||||||
# Background estimation
|
# Background estimation
|
||||||
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
error_sub_type = "freedman-diaconis" # sqrt, sturges, rice, scott, freedman-diaconis (default) or shape (example (51, 51))
|
||||||
subtract_error = 0.7
|
subtract_error = 1.0
|
||||||
display_bkg = False
|
display_bkg = False
|
||||||
|
|
||||||
# Data binning
|
# Data binning
|
||||||
pxsize = 0.1
|
pxsize = 2
|
||||||
pxscale = "arcsec" # pixel, arcsec or full
|
pxscale = "px" # pixel, arcsec or full
|
||||||
rebin_operation = "sum" # sum or average
|
rebin_operation = "sum" # sum or average
|
||||||
|
|
||||||
# Alignement
|
# Alignement
|
||||||
@@ -54,8 +54,8 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
|
|
||||||
# Smoothing
|
# Smoothing
|
||||||
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
smoothing_function = "combine" # gaussian_after, weighted_gaussian_after, gaussian, weighted_gaussian or combine
|
||||||
smoothing_FWHM = 0.2 # If None, no smoothing is done
|
smoothing_FWHM = 2.0 # If None, no smoothing is done
|
||||||
smoothing_scale = "arcsec" # pixel or arcsec
|
smoothing_scale = "px" # pixel or arcsec
|
||||||
|
|
||||||
# Rotation
|
# Rotation
|
||||||
rotate_North = True
|
rotate_North = True
|
||||||
@@ -64,31 +64,10 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
SNRp_cut = 3.0 # P measurments with SNR>3
|
SNRp_cut = 3.0 # P measurments with SNR>3
|
||||||
SNRi_cut = 1.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
SNRi_cut = 1.0 # I measurments with SNR>30, which implies an uncertainty in P of 4.7%.
|
||||||
flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
flux_lim = None # lowest and highest flux displayed on plot, defaults to bkg and maximum in cut if None
|
||||||
scale_vec = 3
|
scale_vec = 5
|
||||||
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
step_vec = 1 # plot all vectors in the array. if step_vec = 2, then every other vector will be plotted if step_vec = 0 then all vectors are displayed at full length
|
||||||
|
|
||||||
# Pipeline start
|
# Pipeline start
|
||||||
# Step 0:
|
|
||||||
# Get parameters from kwargs
|
|
||||||
for key, value in [
|
|
||||||
["error_sub_type", error_sub_type],
|
|
||||||
["subtract_error", subtract_error],
|
|
||||||
["pxsize", pxsize],
|
|
||||||
["pxscale", pxscale],
|
|
||||||
["smoothing_function", smoothing_function],
|
|
||||||
["smoothing_FWHM", smoothing_FWHM],
|
|
||||||
["smoothing_scale", smoothing_scale],
|
|
||||||
["SNRp_cut", SNRp_cut],
|
|
||||||
["SNRi_cut", SNRi_cut],
|
|
||||||
["flux_lim", flux_lim],
|
|
||||||
["scale_vec", scale_vec],
|
|
||||||
["step_vec", step_vec],
|
|
||||||
]:
|
|
||||||
try:
|
|
||||||
value = kwargs[key]
|
|
||||||
except KeyError:
|
|
||||||
pass
|
|
||||||
rebin = True if pxsize is not None else False
|
|
||||||
|
|
||||||
# Step 1:
|
# Step 1:
|
||||||
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
# Get data from fits files and translate to flux in erg/cm²/s/Angstrom.
|
||||||
@@ -119,19 +98,18 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
|
|
||||||
figname = "_".join([target, "FOC"])
|
figname = "_".join([target, "FOC"])
|
||||||
figtype = ""
|
figtype = ""
|
||||||
if rebin:
|
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
|
||||||
if pxscale not in ["full"]:
|
if pxscale not in ["full"]:
|
||||||
figtype = "".join(["b", "{0:.2f}".format(pxsize), pxscale]) # additionnal informations
|
figtype = "".join(["b", "{0:.2f}".format(pxsize), pxscale]) # additionnal informations
|
||||||
else:
|
else:
|
||||||
figtype = "full"
|
figtype = "full"
|
||||||
if smoothing_FWHM is not None:
|
if smoothing_FWHM is not None and smoothing_scale is not None:
|
||||||
figtype += "_" + "".join(
|
smoothstr = "".join([*[s[0] for s in smoothing_function.split("_")], "{0:.2f}".format(smoothing_FWHM), smoothing_scale])
|
||||||
["".join([s[0] for s in smoothing_function.split("_")]), "{0:.2f}".format(smoothing_FWHM), smoothing_scale]
|
figtype = "_".join([figtype, smoothstr] if figtype != "" else [smoothstr])
|
||||||
) # additionnal informations
|
|
||||||
if deconvolve:
|
if deconvolve:
|
||||||
figtype += "_deconv"
|
figtype = "_".join([figtype, "deconv"] if figtype != "" else ["deconv"])
|
||||||
if align_center is None:
|
if align_center is None:
|
||||||
figtype += "_not_aligned"
|
figtype = "_".join([figtype, "not_aligned"] if figtype != "" else ["not_aligned"])
|
||||||
|
|
||||||
# Crop data to remove outside blank margins.
|
# Crop data to remove outside blank margins.
|
||||||
data_array, error_array, headers = proj_red.crop_array(
|
data_array, error_array, headers = proj_red.crop_array(
|
||||||
@@ -159,7 +137,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Rotate data to have same orientation
|
# Rotate data to have same orientation
|
||||||
rotate_data = np.unique([float(head["ORIENTAT"]) for head in headers]).size != 1
|
rotate_data = np.unique([np.round(float(head["ORIENTAT"]), 3) for head in headers]).size != 1
|
||||||
if rotate_data:
|
if rotate_data:
|
||||||
ang = np.mean([head["ORIENTAT"] for head in headers])
|
ang = np.mean([head["ORIENTAT"] for head in headers])
|
||||||
for head in headers:
|
for head in headers:
|
||||||
@@ -199,7 +177,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
)
|
)
|
||||||
|
|
||||||
# Rebin data to desired pixel size.
|
# Rebin data to desired pixel size.
|
||||||
if rebin:
|
if (pxsize is not None) and not (pxsize == 1 and pxscale.lower() in ["px", "pixel", "pixels"]):
|
||||||
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
data_array, error_array, headers, Dxy, data_mask = proj_red.rebin_array(
|
||||||
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
|
data_array, error_array, headers, pxsize=pxsize, scale=pxscale, operation=rebin_operation, data_mask=data_mask
|
||||||
)
|
)
|
||||||
@@ -246,7 +224,9 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes = proj_red.rotate_Stokes(
|
||||||
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_stokes, SNRi_cut=None
|
||||||
)
|
)
|
||||||
I_bkg, Q_bkg, U_bkg, S_cov_bkg, _, _ = proj_red.rotate_Stokes(I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None)
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, data_mask_bkg, header_bkg = proj_red.rotate_Stokes(
|
||||||
|
I_bkg, Q_bkg, U_bkg, S_cov_bkg, np.array(True).reshape(1, 1), header_bkg, SNRi_cut=None
|
||||||
|
)
|
||||||
|
|
||||||
# Compute polarimetric parameters (polarization degree and angle).
|
# Compute polarimetric parameters (polarization degree and angle).
|
||||||
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P = proj_red.compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, header_stokes)
|
||||||
@@ -273,6 +253,7 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
data_folder=data_folder,
|
data_folder=data_folder,
|
||||||
return_hdul=True,
|
return_hdul=True,
|
||||||
)
|
)
|
||||||
|
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||||
|
|
||||||
# Step 5:
|
# Step 5:
|
||||||
# crop to desired region of interest (roi)
|
# crop to desired region of interest (roi)
|
||||||
@@ -281,15 +262,16 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
stokescrop = proj_plots.crop_Stokes(deepcopy(Stokes_hdul), norm=LogNorm())
|
||||||
stokescrop.crop()
|
stokescrop.crop()
|
||||||
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
|
stokescrop.write_to("/".join([data_folder, figname + ".fits"]))
|
||||||
Stokes_hdul, headers = stokescrop.hdul_crop, [dataset.header for dataset in stokescrop.hdul_crop]
|
Stokes_hdul, header_stokes = stokescrop.hdul_crop, stokescrop.hdul_crop[0].header
|
||||||
|
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"] + ".fits"]))
|
||||||
|
|
||||||
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
data_mask = Stokes_hdul["data_mask"].data.astype(bool)
|
||||||
print(
|
print(
|
||||||
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
"F_int({0:.0f} Angs) = ({1} ± {2})e{3} ergs.cm^-2.s^-1.Angs^-1".format(
|
||||||
header_stokes["photplam"],
|
header_stokes["PHOTPLAM"],
|
||||||
*sci_not(
|
*sci_not(
|
||||||
Stokes_hdul[0].data[data_mask].sum() * header_stokes["photflam"],
|
Stokes_hdul[0].data[data_mask].sum() * header_stokes["PHOTFLAM"],
|
||||||
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["photflam"],
|
np.sqrt(Stokes_hdul[3].data[0, 0][data_mask].sum()) * header_stokes["PHOTFLAM"],
|
||||||
2,
|
2,
|
||||||
out=int,
|
out=int,
|
||||||
),
|
),
|
||||||
@@ -421,8 +403,6 @@ def main(target=None, proposal_id=None, infiles=None, output_dir="./data", crop=
|
|||||||
elif pxscale.lower() not in ["full", "integrate"]:
|
elif pxscale.lower() not in ["full", "integrate"]:
|
||||||
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
proj_plots.pol_map(Stokes_hdul, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, flux_lim=flux_lim)
|
||||||
|
|
||||||
outfiles.append("/".join([data_folder, Stokes_hdul[0].header["FILENAME"]+".fits"]))
|
|
||||||
|
|
||||||
return outfiles
|
return outfiles
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
@@ -182,23 +182,23 @@ def plot_Stokes(Stokes, savename=None, plots_folder=""):
|
|||||||
wcs = WCS(Stokes[0]).deepcopy()
|
wcs = WCS(Stokes[0]).deepcopy()
|
||||||
|
|
||||||
# Plot figure
|
# Plot figure
|
||||||
plt.rcParams.update({"font.size": 12})
|
plt.rcParams.update({"font.size": 14})
|
||||||
ratiox = max(int(stkI.shape[1]/stkI.shape[0]),1)
|
ratiox = max(int(stkI.shape[1]/stkI.shape[0]),1)
|
||||||
ratioy = max(int(stkI.shape[0]/stkI.shape[1]),1)
|
ratioy = max(int(stkI.shape[0]/stkI.shape[1]),1)
|
||||||
fig, (axI, axQ, axU) = plt.subplots(ncols=3, figsize=(20*ratiox, 8*ratioy), subplot_kw=dict(projection=wcs))
|
fig, (axI, axQ, axU) = plt.subplots(ncols=3, figsize=(15*ratiox, 6*ratioy), subplot_kw=dict(projection=wcs))
|
||||||
fig.subplots_adjust(hspace=0, wspace=0.50, bottom=0.01, top=0.99, left=0.07, right=0.97)
|
fig.subplots_adjust(hspace=0, wspace=0.50, bottom=0.01, top=0.99, left=0.07, right=0.97)
|
||||||
fig.suptitle("I, Q, U Stokes parameters")
|
fig.suptitle("I, Q, U Stokes parameters")
|
||||||
|
|
||||||
imI = axI.imshow(stkI, origin="lower", cmap="inferno")
|
imI = axI.imshow(stkI, origin="lower", cmap="inferno")
|
||||||
fig.colorbar(imI, ax=axI, aspect=50, shrink=0.50, pad=0.025, label="counts/sec")
|
fig.colorbar(imI, ax=axI, aspect=30, shrink=0.50, pad=0.025, label="counts/sec")
|
||||||
axI.set(xlabel="RA", ylabel="DEC", title=r"$I_{stokes}$")
|
axI.set(xlabel="RA", ylabel="DEC", title=r"$I_{stokes}$")
|
||||||
|
|
||||||
imQ = axQ.imshow(stkQ, origin="lower", cmap="inferno")
|
imQ = axQ.imshow(stkQ, origin="lower", cmap="inferno")
|
||||||
fig.colorbar(imQ, ax=axQ, aspect=50, shrink=0.50, pad=0.025, label="counts/sec")
|
fig.colorbar(imQ, ax=axQ, aspect=30, shrink=0.50, pad=0.025, label="counts/sec")
|
||||||
axQ.set(xlabel="RA", ylabel="DEC", title=r"$Q_{stokes}$")
|
axQ.set(xlabel="RA", ylabel="DEC", title=r"$Q_{stokes}$")
|
||||||
|
|
||||||
imU = axU.imshow(stkU, origin="lower", cmap="inferno")
|
imU = axU.imshow(stkU, origin="lower", cmap="inferno")
|
||||||
fig.colorbar(imU, ax=axU, aspect=50, shrink=0.50, pad=0.025, label="counts/sec")
|
fig.colorbar(imU, ax=axU, aspect=30, shrink=0.50, pad=0.025, label="counts/sec")
|
||||||
axU.set(xlabel="RA", ylabel="DEC", title=r"$U_{stokes}$")
|
axU.set(xlabel="RA", ylabel="DEC", title=r"$U_{stokes}$")
|
||||||
|
|
||||||
if savename is not None:
|
if savename is not None:
|
||||||
@@ -322,14 +322,20 @@ def polarization_map(
|
|||||||
print("No pixel with polarization information above requested SNR.")
|
print("No pixel with polarization information above requested SNR.")
|
||||||
|
|
||||||
# Plot the map
|
# Plot the map
|
||||||
plt.rcParams.update({"font.size": 12})
|
plt.rcParams.update({"font.size": 14})
|
||||||
plt.rcdefaults()
|
plt.rcdefaults()
|
||||||
ratiox = max(int(stkI.shape[1]/stkI.shape[0]),1)
|
ratiox = max(int(stkI.shape[1]/(stkI.shape[0])),1)
|
||||||
ratioy = max(int(stkI.shape[0]/stkI.shape[1]),1)
|
ratioy = max(int((stkI.shape[0])/stkI.shape[1]),1)
|
||||||
fig, ax = plt.subplots(figsize=(10*ratiox, 10*ratioy), layout="constrained", subplot_kw=dict(projection=wcs))
|
fig, ax = plt.subplots(figsize=(6*ratiox, 6*ratioy), layout="compressed", subplot_kw=dict(projection=wcs))
|
||||||
ax.set(aspect="equal", fc="k")
|
ax.set(aspect="equal", fc="k", ylim=[-stkI.shape[0]*0.10,stkI.shape[0]*1.15])
|
||||||
# fig.subplots_adjust(hspace=0, wspace=0, left=0.102, right=1.02)
|
# fig.subplots_adjust(hspace=0, wspace=0, left=0.102, right=1.02)
|
||||||
|
|
||||||
|
# ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
|
||||||
|
ax.coords[0].set_axislabel("Right Ascension (J2000)")
|
||||||
|
ax.coords[0].set_axislabel_position("t")
|
||||||
|
ax.coords[0].set_ticklabel_position("t")
|
||||||
|
ax.set_ylabel("Declination (J2000)", labelpad=-1)
|
||||||
|
|
||||||
if display.lower() in ["intensity"]:
|
if display.lower() in ["intensity"]:
|
||||||
# If no display selected, show intensity map
|
# If no display selected, show intensity map
|
||||||
display = "i"
|
display = "i"
|
||||||
@@ -341,7 +347,7 @@ def polarization_map(
|
|||||||
else:
|
else:
|
||||||
vmin, vmax = flux_lim
|
vmin, vmax = flux_lim
|
||||||
im = ax.imshow(stkI * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno", alpha=1.0)
|
im = ax.imshow(stkI * convert_flux, norm=LogNorm(vmin, vmax), aspect="equal", cmap="inferno", alpha=1.0)
|
||||||
fig.colorbar(im, ax=ax, aspect=50, shrink=0.75, pad=0.025, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
fig.colorbar(im, ax=ax, aspect=30, shrink=0.75, pad=0.025, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
|
||||||
levelsI = np.array([0.8, 2.0, 5.0, 10.0, 20.0, 50.0]) / 100.0 * vmax
|
levelsI = np.array([0.8, 2.0, 5.0, 10.0, 20.0, 50.0]) / 100.0 * vmax
|
||||||
print("Total flux contour levels : ", levelsI)
|
print("Total flux contour levels : ", levelsI)
|
||||||
ax.contour(stkI * convert_flux, levels=levelsI, colors="grey", linewidths=0.5)
|
ax.contour(stkI * convert_flux, levels=levelsI, colors="grey", linewidths=0.5)
|
||||||
@@ -436,9 +442,9 @@ def polarization_map(
|
|||||||
PA_diluted = Stokes[0].header["PA_int"]
|
PA_diluted = Stokes[0].header["PA_int"]
|
||||||
PA_diluted_err = Stokes[0].header["sPA_int"]
|
PA_diluted_err = Stokes[0].header["sPA_int"]
|
||||||
|
|
||||||
plt.rcParams.update({"font.size": 12})
|
plt.rcParams.update({"font.size": 10})
|
||||||
px_size = wcs.wcs.get_cdelt()[0] * 3600.0
|
px_size = wcs.wcs.get_cdelt()[0] * 3600.0
|
||||||
px_sc = AnchoredSizeBar(ax.transData, 1.0 / px_size, "1 arcsec", 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color="w")
|
px_sc = AnchoredSizeBar(ax.transData, 1.0 / px_size, "1 arcsec", 3, pad=0.25, sep=5, borderpad=0.25, frameon=False, size_vertical=0.005, color="w")
|
||||||
north_dir = AnchoredDirectionArrows(
|
north_dir = AnchoredDirectionArrows(
|
||||||
ax.transAxes,
|
ax.transAxes,
|
||||||
"E",
|
"E",
|
||||||
@@ -446,7 +452,7 @@ def polarization_map(
|
|||||||
length=-0.05,
|
length=-0.05,
|
||||||
fontsize=0.02,
|
fontsize=0.02,
|
||||||
loc=1,
|
loc=1,
|
||||||
aspect_ratio=-(stkI.shape[1]/stkI.shape[0]),
|
aspect_ratio=-(stkI.shape[1]/(stkI.shape[0]*1.25)),
|
||||||
sep_y=0.01,
|
sep_y=0.01,
|
||||||
sep_x=0.01,
|
sep_x=0.01,
|
||||||
back_length=0.0,
|
back_length=0.0,
|
||||||
@@ -482,7 +488,7 @@ def polarization_map(
|
|||||||
color="w",
|
color="w",
|
||||||
edgecolor="k",
|
edgecolor="k",
|
||||||
)
|
)
|
||||||
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color="w")
|
pol_sc = AnchoredSizeBar(ax.transData, scale_vec, r"$P$= 100 %", 4, pad=0.25, sep=5, borderpad=0.25, frameon=False, size_vertical=0.005, color="w")
|
||||||
|
|
||||||
ax.add_artist(pol_sc)
|
ax.add_artist(pol_sc)
|
||||||
ax.add_artist(px_sc)
|
ax.add_artist(px_sc)
|
||||||
@@ -525,12 +531,6 @@ def polarization_map(
|
|||||||
x, y = np.array([x, y]) - np.array(stkI.shape) / 2.0
|
x, y = np.array([x, y]) - np.array(stkI.shape) / 2.0
|
||||||
ax.add_patch(Rectangle((x, y), width, height, angle=angle, edgecolor=color, fill=False))
|
ax.add_patch(Rectangle((x, y), width, height, angle=angle, edgecolor=color, fill=False))
|
||||||
|
|
||||||
# ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
|
|
||||||
ax.coords[0].set_axislabel("Right Ascension (J2000)")
|
|
||||||
ax.coords[0].set_axislabel_position("t")
|
|
||||||
ax.coords[0].set_ticklabel_position("t")
|
|
||||||
ax.set_ylabel("Declination (J2000)", labelpad=-1)
|
|
||||||
|
|
||||||
if savename is not None:
|
if savename is not None:
|
||||||
if savename[-4:] not in [".png", ".jpg", ".pdf"]:
|
if savename[-4:] not in [".png", ".jpg", ".pdf"]:
|
||||||
savename += ".pdf"
|
savename += ".pdf"
|
||||||
|
|||||||
@@ -433,7 +433,18 @@ def deconvolve_array(data_array, headers, psf="gaussian", FWHM=1.0, scale="px",
|
|||||||
return deconv_array
|
return deconv_array
|
||||||
|
|
||||||
|
|
||||||
def get_error(data_array, headers, error_array=None, data_mask=None, sub_type=None, subtract_error=0.5, display=False, savename=None, plots_folder="", return_background=False):
|
def get_error(
|
||||||
|
data_array,
|
||||||
|
headers,
|
||||||
|
error_array=None,
|
||||||
|
data_mask=None,
|
||||||
|
sub_type=None,
|
||||||
|
subtract_error=0.5,
|
||||||
|
display=False,
|
||||||
|
savename=None,
|
||||||
|
plots_folder="",
|
||||||
|
return_background=False,
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Look for sub-image of shape sub_shape that have the smallest integrated
|
Look for sub-image of shape sub_shape that have the smallest integrated
|
||||||
flux (no source assumption) and define the background on the image by the
|
flux (no source assumption) and define the background on the image by the
|
||||||
@@ -521,23 +532,23 @@ def get_error(data_array, headers, error_array=None, data_mask=None, sub_type=No
|
|||||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
||||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||||
)
|
)
|
||||||
sub_type, subtract_error = "histogram ", str(int(subtract_error>0.))
|
sub_type, subtract_error = "histogram ", str(int(subtract_error > 0.0))
|
||||||
elif isinstance(sub_type, str):
|
elif isinstance(sub_type, str):
|
||||||
if sub_type.lower() in ["auto"]:
|
if sub_type.lower() in ["auto"]:
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_fit(
|
n_data_array, c_error_bkg, headers, background = bkg_fit(
|
||||||
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||||
)
|
)
|
||||||
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
sub_type, subtract_error = "histogram fit ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
||||||
else:
|
else:
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
n_data_array, c_error_bkg, headers, background = bkg_hist(
|
||||||
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, sub_type=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||||
)
|
)
|
||||||
sub_type, subtract_error = "histogram ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
sub_type, subtract_error = "histogram ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
||||||
elif isinstance(sub_type, tuple):
|
elif isinstance(sub_type, tuple):
|
||||||
n_data_array, c_error_bkg, headers, background = bkg_mini(
|
n_data_array, c_error_bkg, headers, background = bkg_mini(
|
||||||
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
data, error, mask, headers, sub_shape=sub_type, subtract_error=subtract_error, display=display, savename=savename, plots_folder=plots_folder
|
||||||
)
|
)
|
||||||
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma"%subtract_error if subtract_error != 0. else 0.
|
sub_type, subtract_error = "minimal flux ", "mean+%.1fsigma" % subtract_error if subtract_error != 0.0 else 0.0
|
||||||
else:
|
else:
|
||||||
print("Warning: Invalid subtype.")
|
print("Warning: Invalid subtype.")
|
||||||
|
|
||||||
@@ -618,7 +629,12 @@ def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operatio
|
|||||||
|
|
||||||
# Compute binning ratio
|
# Compute binning ratio
|
||||||
if scale.lower() in ["px", "pixel"]:
|
if scale.lower() in ["px", "pixel"]:
|
||||||
Dxy_arr[i] = np.array( [ pxsize, ] * 2)
|
Dxy_arr[i] = np.array(
|
||||||
|
[
|
||||||
|
pxsize,
|
||||||
|
]
|
||||||
|
* 2
|
||||||
|
)
|
||||||
scale = "px"
|
scale = "px"
|
||||||
elif scale.lower() in ["arcsec", "arcseconds"]:
|
elif scale.lower() in ["arcsec", "arcseconds"]:
|
||||||
Dxy_arr[i] = np.array(pxsize / np.abs(w.wcs.cdelt) / 3600.0)
|
Dxy_arr[i] = np.array(pxsize / np.abs(w.wcs.cdelt) / 3600.0)
|
||||||
@@ -676,7 +692,9 @@ def rebin_array(data_array, error_array, headers, pxsize=2, scale="px", operatio
|
|||||||
return rebinned_data, rebinned_error, rebinned_headers, Dxy, data_mask
|
return rebinned_data, rebinned_error, rebinned_headers, Dxy, data_mask
|
||||||
|
|
||||||
|
|
||||||
def align_data(data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False):
|
def align_data(
|
||||||
|
data_array, headers, error_array=None, data_mask=None, background=None, upsample_factor=1.0, ref_data=None, ref_center=None, return_shifts=False
|
||||||
|
):
|
||||||
"""
|
"""
|
||||||
Align images in data_array using cross correlation, and rescale them to
|
Align images in data_array using cross correlation, and rescale them to
|
||||||
wider images able to contain any rotation of the reference image.
|
wider images able to contain any rotation of the reference image.
|
||||||
@@ -757,7 +775,9 @@ def align_data(data_array, headers, error_array=None, data_mask=None, background
|
|||||||
if data_mask is None:
|
if data_mask is None:
|
||||||
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
|
full_array, err_array, full_headers = crop_array(full_array, full_headers, err_array, step=5, inside=False, null_val=0.0)
|
||||||
else:
|
else:
|
||||||
full_array, err_array, data_mask, full_headers = crop_array(full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0)
|
full_array, err_array, data_mask, full_headers = crop_array(
|
||||||
|
full_array, full_headers, err_array, data_mask=data_mask, step=5, inside=False, null_val=0.0
|
||||||
|
)
|
||||||
|
|
||||||
data_array, ref_data, headers = full_array[:-1], full_array[-1], full_headers[:-1]
|
data_array, ref_data, headers = full_array[:-1], full_array[-1], full_headers[:-1]
|
||||||
error_array = err_array[:-1]
|
error_array = err_array[:-1]
|
||||||
@@ -806,8 +826,8 @@ def align_data(data_array, headers, error_array=None, data_mask=None, background
|
|||||||
rescaled_image[i] = sc_shift(rescaled_image[i], shift, order=1, cval=0.0)
|
rescaled_image[i] = sc_shift(rescaled_image[i], shift, order=1, cval=0.0)
|
||||||
rescaled_error[i] = sc_shift(rescaled_error[i], shift, order=1, cval=background[i])
|
rescaled_error[i] = sc_shift(rescaled_error[i], shift, order=1, cval=background[i])
|
||||||
|
|
||||||
curr_mask = sc_shift(res_mask*10., shift, order=1, cval=0.0)
|
curr_mask = sc_shift(res_mask * 10.0, shift, order=1, cval=0.0)
|
||||||
curr_mask[curr_mask < curr_mask.max()*2./3.] = 0.0
|
curr_mask[curr_mask < curr_mask.max() * 2.0 / 3.0] = 0.0
|
||||||
rescaled_mask[i] = curr_mask.astype(bool)
|
rescaled_mask[i] = curr_mask.astype(bool)
|
||||||
# mask_vertex = clean_ROI(curr_mask)
|
# mask_vertex = clean_ROI(curr_mask)
|
||||||
# rescaled_mask[i, mask_vertex[2] : mask_vertex[3], mask_vertex[0] : mask_vertex[1]] = True
|
# rescaled_mask[i, mask_vertex[2] : mask_vertex[3], mask_vertex[0] : mask_vertex[1]] = True
|
||||||
@@ -1195,9 +1215,9 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
rotate = np.zeros(len(headers))
|
rotate = np.zeros(len(headers))
|
||||||
for i, head in enumerate(headers):
|
for i, head in enumerate(headers):
|
||||||
try:
|
try:
|
||||||
rotate[i] = head['ROTATE']
|
rotate[i] = head["ROTATE"]
|
||||||
except KeyError:
|
except KeyError:
|
||||||
rotate[i] = 0.
|
rotate[i] = 0.0
|
||||||
|
|
||||||
if (np.unique(rotate) == rotate[0]).all():
|
if (np.unique(rotate) == rotate[0]).all():
|
||||||
theta = globals()["theta"] - rotate[0] * np.pi / 180.0
|
theta = globals()["theta"] - rotate[0] * np.pi / 180.0
|
||||||
@@ -1231,8 +1251,8 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
|
|
||||||
# Calculating correction factor: allows all pol_filt to share same exptime and inverse sensitivity (taken to be the one from POL0)
|
# Calculating correction factor: allows all pol_filt to share same exptime and inverse sensitivity (taken to be the one from POL0)
|
||||||
corr = np.array([1.0 * h["photflam"] / h["exptime"] for h in pol_headers]) * pol_headers[0]["exptime"] / pol_headers[0]["photflam"]
|
corr = np.array([1.0 * h["photflam"] / h["exptime"] for h in pol_headers]) * pol_headers[0]["exptime"] / pol_headers[0]["photflam"]
|
||||||
pol_headers[1]['photflam'], pol_headers[1]['exptime'] = pol_headers[0]['photflam'], pol_headers[1]['exptime']
|
pol_headers[1]["photflam"], pol_headers[1]["exptime"] = pol_headers[0]["photflam"], pol_headers[1]["exptime"]
|
||||||
pol_headers[2]['photflam'], pol_headers[2]['exptime'] = pol_headers[0]['photflam'], pol_headers[2]['exptime']
|
pol_headers[2]["photflam"], pol_headers[2]["exptime"] = pol_headers[0]["photflam"], pol_headers[2]["exptime"]
|
||||||
|
|
||||||
# Orientation and error for each polarizer
|
# Orientation and error for each polarizer
|
||||||
# fmax = np.finfo(np.float64).max
|
# fmax = np.finfo(np.float64).max
|
||||||
@@ -1241,22 +1261,12 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
coeff_stokes = np.zeros((3, 3))
|
coeff_stokes = np.zeros((3, 3))
|
||||||
# Coefficients linking each polarizer flux to each Stokes parameter
|
# Coefficients linking each polarizer flux to each Stokes parameter
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
coeff_stokes[0, i] = (
|
coeff_stokes[0, i] = pol_eff[(i + 1) % 3] * pol_eff[(i + 2) % 3] * np.sin(-2.0 * theta[(i + 1) % 3] + 2.0 * theta[(i + 2) % 3]) * 2.0 / transmit[i]
|
||||||
pol_eff[(i + 1) % 3]
|
|
||||||
* pol_eff[(i + 2) % 3]
|
|
||||||
* np.sin(-2.0 * theta[(i + 1) % 3] + 2.0 * theta[(i + 2) % 3])
|
|
||||||
* 2.0
|
|
||||||
/ transmit[i]
|
|
||||||
)
|
|
||||||
coeff_stokes[1, i] = (
|
coeff_stokes[1, i] = (
|
||||||
(-pol_eff[(i + 1) % 3] * np.sin(2.0 * theta[(i + 1) % 3]) + pol_eff[(i + 2) % 3] * np.sin(2.0 * theta[(i + 2) % 3]))
|
(-pol_eff[(i + 1) % 3] * np.sin(2.0 * theta[(i + 1) % 3]) + pol_eff[(i + 2) % 3] * np.sin(2.0 * theta[(i + 2) % 3])) * 2.0 / transmit[i]
|
||||||
* 2.0
|
|
||||||
/ transmit[i]
|
|
||||||
)
|
)
|
||||||
coeff_stokes[2, i] = (
|
coeff_stokes[2, i] = (
|
||||||
(pol_eff[(i + 1) % 3] * np.cos(2.0 * theta[(i + 1) % 3]) - pol_eff[(i + 2) % 3] * np.cos(2.0 * theta[(i + 2) % 3]))
|
(pol_eff[(i + 1) % 3] * np.cos(2.0 * theta[(i + 1) % 3]) - pol_eff[(i + 2) % 3] * np.cos(2.0 * theta[(i + 2) % 3])) * 2.0 / transmit[i]
|
||||||
* 2.0
|
|
||||||
/ transmit[i]
|
|
||||||
)
|
)
|
||||||
|
|
||||||
# Normalization parameter for Stokes parameters computation
|
# Normalization parameter for Stokes parameters computation
|
||||||
@@ -1348,11 +1358,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
/ N
|
/ N
|
||||||
* (
|
* (
|
||||||
np.cos(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
np.cos(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
||||||
- (
|
- (pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) - pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])) * Q_stokes
|
||||||
pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
|
||||||
- pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
|
||||||
)
|
|
||||||
* Q_stokes
|
|
||||||
+ coeff_stokes_corr[1, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
+ coeff_stokes_corr[1, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1362,11 +1368,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
/ N
|
/ N
|
||||||
* (
|
* (
|
||||||
np.cos(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
np.cos(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
||||||
- (
|
- (pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) - pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])) * Q_stokes
|
||||||
pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
|
||||||
- pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
|
||||||
)
|
|
||||||
* Q_stokes
|
|
||||||
+ coeff_stokes_corr[1, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
+ coeff_stokes_corr[1, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1376,11 +1378,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
/ N
|
/ N
|
||||||
* (
|
* (
|
||||||
np.cos(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
np.cos(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
||||||
- (
|
- (pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) - pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])) * Q_stokes
|
||||||
pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
|
||||||
- pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
|
||||||
)
|
|
||||||
* Q_stokes
|
|
||||||
+ coeff_stokes_corr[1, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
+ coeff_stokes_corr[1, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1392,11 +1390,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
/ N
|
/ N
|
||||||
* (
|
* (
|
||||||
np.sin(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
np.sin(2.0 * theta[0]) * (pol_flux_corr[1] - pol_flux_corr[2])
|
||||||
- (
|
- (pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0]) - pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])) * U_stokes
|
||||||
pol_eff[2] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
|
||||||
- pol_eff[1] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
|
||||||
)
|
|
||||||
* U_stokes
|
|
||||||
+ coeff_stokes_corr[2, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
+ coeff_stokes_corr[2, 0] * (np.sin(2.0 * theta[0]) * Q_stokes - np.cos(2 * theta[0]) * U_stokes)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1406,11 +1400,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
/ N
|
/ N
|
||||||
* (
|
* (
|
||||||
np.sin(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
np.sin(2.0 * theta[1]) * (pol_flux_corr[2] - pol_flux_corr[0])
|
||||||
- (
|
- (pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1]) - pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])) * U_stokes
|
||||||
pol_eff[0] * np.cos(-2.0 * theta[0] + 2.0 * theta[1])
|
|
||||||
- pol_eff[2] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
|
||||||
)
|
|
||||||
* U_stokes
|
|
||||||
+ coeff_stokes_corr[2, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
+ coeff_stokes_corr[2, 1] * (np.sin(2.0 * theta[1]) * Q_stokes - np.cos(2 * theta[1]) * U_stokes)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1420,11 +1410,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
/ N
|
/ N
|
||||||
* (
|
* (
|
||||||
np.sin(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
np.sin(2.0 * theta[2]) * (pol_flux_corr[0] - pol_flux_corr[1])
|
||||||
- (
|
- (pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2]) - pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])) * U_stokes
|
||||||
pol_eff[1] * np.cos(-2.0 * theta[1] + 2.0 * theta[2])
|
|
||||||
- pol_eff[0] * np.cos(-2.0 * theta[2] + 2.0 * theta[0])
|
|
||||||
)
|
|
||||||
* U_stokes
|
|
||||||
+ coeff_stokes_corr[2, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
+ coeff_stokes_corr[2, 2] * (np.sin(2.0 * theta[2]) * Q_stokes - np.cos(2 * theta[2]) * U_stokes)
|
||||||
)
|
)
|
||||||
)
|
)
|
||||||
@@ -1451,12 +1437,24 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
all_Q_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
all_Q_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||||
all_U_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
all_U_stokes = np.zeros((np.unique(rotate).size, data_array.shape[1], data_array.shape[2]))
|
||||||
all_Stokes_cov = np.zeros((np.unique(rotate).size, 3, 3, data_array.shape[1], data_array.shape[2]))
|
all_Stokes_cov = np.zeros((np.unique(rotate).size, 3, 3, data_array.shape[1], data_array.shape[2]))
|
||||||
all_header_stokes = [{},]*np.unique(rotate).size
|
all_header_stokes = [
|
||||||
|
{},
|
||||||
|
] * np.unique(rotate).size
|
||||||
|
|
||||||
for i, rot in enumerate(np.unique(rotate)):
|
for i, rot in enumerate(np.unique(rotate)):
|
||||||
rot_mask = (rotate == rot)
|
rot_mask = rotate == rot
|
||||||
all_I_stokes[i], all_Q_stokes[i], all_U_stokes[i], all_Stokes_cov[i], all_header_stokes[i] = compute_Stokes(data_array[rot_mask], error_array[rot_mask], data_mask, [headers[i] for i in np.arange(len(headers))[rot_mask]], FWHM=FWHM, scale=scale, smoothing=smoothing, transmitcorr=transmitcorr, integrate=False)
|
all_I_stokes[i], all_Q_stokes[i], all_U_stokes[i], all_Stokes_cov[i], all_header_stokes[i] = compute_Stokes(
|
||||||
all_exp = np.array([float(h['exptime']) for h in all_header_stokes])
|
data_array[rot_mask],
|
||||||
|
error_array[rot_mask],
|
||||||
|
data_mask,
|
||||||
|
[headers[i] for i in np.arange(len(headers))[rot_mask]],
|
||||||
|
FWHM=FWHM,
|
||||||
|
scale=scale,
|
||||||
|
smoothing=smoothing,
|
||||||
|
transmitcorr=transmitcorr,
|
||||||
|
integrate=False,
|
||||||
|
)
|
||||||
|
all_exp = np.array([float(h["exptime"]) for h in all_header_stokes])
|
||||||
|
|
||||||
I_stokes = np.sum([exp * I for exp, I in zip(all_exp, all_I_stokes)], axis=0) / all_exp.sum()
|
I_stokes = np.sum([exp * I for exp, I in zip(all_exp, all_I_stokes)], axis=0) / all_exp.sum()
|
||||||
Q_stokes = np.sum([exp * Q for exp, Q in zip(all_exp, all_Q_stokes)], axis=0) / all_exp.sum()
|
Q_stokes = np.sum([exp * Q for exp, Q in zip(all_exp, all_Q_stokes)], axis=0) / all_exp.sum()
|
||||||
@@ -1470,7 +1468,7 @@ def compute_Stokes(data_array, error_array, data_mask, headers, FWHM=None, scale
|
|||||||
|
|
||||||
# Save values to single header
|
# Save values to single header
|
||||||
header_stokes = all_header_stokes[0]
|
header_stokes = all_header_stokes[0]
|
||||||
header_stokes['exptime'] = all_exp.sum()
|
header_stokes["exptime"] = all_exp.sum()
|
||||||
|
|
||||||
# Nan handling :
|
# Nan handling :
|
||||||
fmax = np.finfo(np.float64).max
|
fmax = np.finfo(np.float64).max
|
||||||
@@ -1681,12 +1679,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
U_stokes[i, j] = eps * np.sqrt(Stokes_cov[2, 2][i, j])
|
U_stokes[i, j] = eps * np.sqrt(Stokes_cov[2, 2][i, j])
|
||||||
|
|
||||||
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
# Rotate I_stokes, Q_stokes, U_stokes using rotation matrix
|
||||||
# ang = np.zeros((len(headers),))
|
ang = -float(header_stokes["ORIENTAT"])
|
||||||
# for i, head in enumerate(headers):
|
|
||||||
# pc = WCS(head).celestial.wcs.pc[0,0]
|
|
||||||
# ang[i] = -np.arccos(WCS(head).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
|
||||||
pc = WCS(header_stokes).celestial.wcs.pc[0,0]
|
|
||||||
ang = -np.arccos(WCS(header_stokes).celestial.wcs.pc[0,0]) * 180.0 / np.pi if np.abs(pc) < 1. else 0.
|
|
||||||
alpha = np.pi / 180.0 * ang
|
alpha = np.pi / 180.0 * ang
|
||||||
mrot = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(2.0 * alpha), np.sin(2.0 * alpha)], [0, -np.sin(2.0 * alpha), np.cos(2.0 * alpha)]])
|
mrot = np.array([[1.0, 0.0, 0.0], [0.0, np.cos(2.0 * alpha), np.sin(2.0 * alpha)], [0, -np.sin(2.0 * alpha), np.cos(2.0 * alpha)]])
|
||||||
|
|
||||||
@@ -1709,7 +1702,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
new_Q_stokes = sc_rotate(Q_stokes, ang, order=1, reshape=False, cval=0.0)
|
new_Q_stokes = sc_rotate(Q_stokes, ang, order=1, reshape=False, cval=0.0)
|
||||||
new_U_stokes = sc_rotate(U_stokes, ang, order=1, reshape=False, cval=0.0)
|
new_U_stokes = sc_rotate(U_stokes, ang, order=1, reshape=False, cval=0.0)
|
||||||
new_data_mask = sc_rotate(data_mask.astype(float) * 10.0, ang, order=1, reshape=False, cval=0.0)
|
new_data_mask = sc_rotate(data_mask.astype(float) * 10.0, ang, order=1, reshape=False, cval=0.0)
|
||||||
new_data_mask[new_data_mask < 2] = 0.0
|
new_data_mask[new_data_mask < 1.0] = 0.0
|
||||||
new_data_mask = new_data_mask.astype(bool)
|
new_data_mask = new_data_mask.astype(bool)
|
||||||
for i in range(3):
|
for i in range(3):
|
||||||
for j in range(3):
|
for j in range(3):
|
||||||
@@ -1725,7 +1718,6 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
mrot = np.array([[np.cos(-alpha), -np.sin(-alpha)], [np.sin(-alpha), np.cos(-alpha)]])
|
||||||
|
|
||||||
new_header_stokes = deepcopy(header_stokes)
|
new_header_stokes = deepcopy(header_stokes)
|
||||||
new_header_stokes["orientat"] = header_stokes["orientat"] + ang
|
|
||||||
new_wcs = WCS(header_stokes).celestial.deepcopy()
|
new_wcs = WCS(header_stokes).celestial.deepcopy()
|
||||||
|
|
||||||
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
|
new_wcs.wcs.pc = np.dot(mrot, new_wcs.wcs.pc)
|
||||||
@@ -1737,7 +1729,7 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, header_st
|
|||||||
new_header_stokes.set("PC1_1", 1.0)
|
new_header_stokes.set("PC1_1", 1.0)
|
||||||
if new_wcs.wcs.pc[1, 1] == 1.0:
|
if new_wcs.wcs.pc[1, 1] == 1.0:
|
||||||
new_header_stokes.set("PC2_2", 1.0)
|
new_header_stokes.set("PC2_2", 1.0)
|
||||||
new_header_stokes["orientat"] = header_stokes["orientat"] + ang
|
new_header_stokes["ORIENTAT"] += ang
|
||||||
|
|
||||||
# Nan handling :
|
# Nan handling :
|
||||||
fmax = np.finfo(np.float64).max
|
fmax = np.finfo(np.float64).max
|
||||||
@@ -1849,7 +1841,7 @@ def rotate_data(data_array, error_array, data_mask, headers):
|
|||||||
new_data_array = np.array(new_data_array)
|
new_data_array = np.array(new_data_array)
|
||||||
new_error_array = np.array(new_error_array)
|
new_error_array = np.array(new_error_array)
|
||||||
new_data_mask = np.array(new_data_mask).sum(axis=0)
|
new_data_mask = np.array(new_data_mask).sum(axis=0)
|
||||||
new_data_mask[new_data_mask < new_data_mask.max()*2./3.] = 0.0
|
new_data_mask[new_data_mask < 1.0] = 0.0
|
||||||
new_data_mask = new_data_mask.astype(bool)
|
new_data_mask = new_data_mask.astype(bool)
|
||||||
|
|
||||||
for i in range(new_data_array.shape[0]):
|
for i in range(new_data_array.shape[0]):
|
||||||
|
|||||||
Reference in New Issue
Block a user