rework variable names on align class
This commit is contained in:
@@ -30,7 +30,7 @@ prototypes :
|
||||
Compute Stokes parameters I, Q and U and their respective correlated errors from data_array.
|
||||
|
||||
- compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers) -> P, debiased_P, s_P, s_P_P, PA, s_PA, s_PA_P
|
||||
Compute polarization degree (in %) and angle (in degree) and their respective errors.
|
||||
Compute polarisation degree (in %) and angle (in degree) and their respective errors.
|
||||
|
||||
- rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers, ang, SNRi_cut) -> I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers
|
||||
Rotate I, Q, U given an angle in degrees using scipy functions.
|
||||
@@ -992,7 +992,7 @@ def polarizer_avg(data_array, error_array, data_mask, headers, FWHM=None,
|
||||
FWHM=FWHM, scale=scale, smoothing=smoothing)
|
||||
|
||||
else:
|
||||
# Sum on each polarization filter.
|
||||
# Sum on each polarisation filter.
|
||||
pol0_t = np.sum([header['exptime'] for header in headers0])
|
||||
pol60_t = np.sum([header['exptime'] for header in headers60])
|
||||
pol120_t = np.sum([header['exptime'] for header in headers120])
|
||||
@@ -1101,10 +1101,10 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
total intensity
|
||||
Q_stokes : numpy.ndarray
|
||||
Image (2D floats) containing the Stokes parameters accounting for
|
||||
vertical/horizontal linear polarization intensity
|
||||
vertical/horizontal linear polarisation intensity
|
||||
U_stokes : numpy.ndarray
|
||||
Image (2D floats) containing the Stokes parameters accounting for
|
||||
+45/-45deg linear polarization intensity
|
||||
+45/-45deg linear polarisation intensity
|
||||
Stokes_cov : numpy.ndarray
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
"""
|
||||
@@ -1257,17 +1257,17 @@ def compute_Stokes(data_array, error_array, data_mask, headers,
|
||||
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
|
||||
|
||||
for header in headers:
|
||||
header['P_int'] = (P_diluted, 'Integrated polarization degree')
|
||||
header['P_int_err'] = (np.ceil(P_diluted_err*1000.)/1000., 'Integrated polarization degree error')
|
||||
header['PA_int'] = (PA_diluted, 'Integrated polarization angle')
|
||||
header['PA_int_err'] = (np.ceil(PA_diluted_err*10.)/10., 'Integrated polarization angle error')
|
||||
header['P_int'] = (P_diluted, 'Integrated polarisation degree')
|
||||
header['P_int_err'] = (np.ceil(P_diluted_err*1000.)/1000., 'Integrated polarisation degree error')
|
||||
header['PA_int'] = (PA_diluted, 'Integrated polarisation angle')
|
||||
header['PA_int_err'] = (np.ceil(PA_diluted_err*10.)/10., 'Integrated polarisation angle error')
|
||||
|
||||
return I_stokes, Q_stokes, U_stokes, Stokes_cov
|
||||
|
||||
|
||||
def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
"""
|
||||
Compute the polarization degree (in %) and angle (in deg) and their
|
||||
Compute the polarisation degree (in %) and angle (in deg) and their
|
||||
respective errors from given Stokes parameters.
|
||||
----------
|
||||
Inputs:
|
||||
@@ -1276,10 +1276,10 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
total intensity
|
||||
Q_stokes : numpy.ndarray
|
||||
Image (2D floats) containing the Stokes parameters accounting for
|
||||
vertical/horizontal linear polarization intensity
|
||||
vertical/horizontal linear polarisation intensity
|
||||
U_stokes : numpy.ndarray
|
||||
Image (2D floats) containing the Stokes parameters accounting for
|
||||
+45/-45deg linear polarization intensity
|
||||
+45/-45deg linear polarisation intensity
|
||||
Stokes_cov : numpy.ndarray
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
headers : header list
|
||||
@@ -1287,21 +1287,21 @@ def compute_pol(I_stokes, Q_stokes, U_stokes, Stokes_cov, headers):
|
||||
----------
|
||||
Returns:
|
||||
P : numpy.ndarray
|
||||
Image (2D floats) containing the polarization degree (in %).
|
||||
Image (2D floats) containing the polarisation degree (in %).
|
||||
debiased_P : numpy.ndarray
|
||||
Image (2D floats) containing the debiased polarization degree (in %).
|
||||
Image (2D floats) containing the debiased polarisation degree (in %).
|
||||
s_P : numpy.ndarray
|
||||
Image (2D floats) containing the error on the polarization degree.
|
||||
Image (2D floats) containing the error on the polarisation degree.
|
||||
s_P_P : numpy.ndarray
|
||||
Image (2D floats) containing the Poisson noise error on the
|
||||
polarization degree.
|
||||
polarisation degree.
|
||||
PA : numpy.ndarray
|
||||
Image (2D floats) containing the polarization angle.
|
||||
Image (2D floats) containing the polarisation angle.
|
||||
s_PA : numpy.ndarray
|
||||
Image (2D floats) containing the error on the polarization angle.
|
||||
Image (2D floats) containing the error on the polarisation angle.
|
||||
s_PA_P : numpy.ndarray
|
||||
Image (2D floats) containing the Poisson noise error on the
|
||||
polarization angle.
|
||||
polarisation angle.
|
||||
new_headers : header list
|
||||
Updated list of headers corresponding to the reduced images accounting
|
||||
for the new orientation angle.
|
||||
@@ -1374,10 +1374,10 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
total intensity
|
||||
Q_stokes : numpy.ndarray
|
||||
Image (2D floats) containing the Stokes parameters accounting for
|
||||
vertical/horizontal linear polarization intensity
|
||||
vertical/horizontal linear polarisation intensity
|
||||
U_stokes : numpy.ndarray
|
||||
Image (2D floats) containing the Stokes parameters accounting for
|
||||
+45/-45deg linear polarization intensity
|
||||
+45/-45deg linear polarisation intensity
|
||||
Stokes_cov : numpy.ndarray
|
||||
Covariance matrix of the Stokes parameters I, Q, U.
|
||||
data_mask : numpy.ndarray
|
||||
@@ -1399,10 +1399,10 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
accounting for total intensity
|
||||
new_Q_stokes : numpy.ndarray
|
||||
Rotated mage (2D floats) containing the rotated Stokes parameters
|
||||
accounting for vertical/horizontal linear polarization intensity
|
||||
accounting for vertical/horizontal linear polarisation intensity
|
||||
new_U_stokes : numpy.ndarray
|
||||
Rotated image (2D floats) containing the rotated Stokes parameters
|
||||
accounting for +45/-45deg linear polarization intensity.
|
||||
accounting for +45/-45deg linear polarisation intensity.
|
||||
new_Stokes_cov : numpy.ndarray
|
||||
Updated covariance matrix of the Stokes parameters I, Q, U.
|
||||
new_headers : header list
|
||||
@@ -1516,10 +1516,10 @@ def rotate_Stokes(I_stokes, Q_stokes, U_stokes, Stokes_cov, data_mask, headers,
|
||||
PA_diluted_err = (90./(np.pi*(Q_diluted**2 + U_diluted**2)))*np.sqrt(U_diluted**2*Q_diluted_err**2 + Q_diluted**2*U_diluted_err**2 - 2.*Q_diluted*U_diluted*QU_diluted_err)
|
||||
|
||||
for header in new_headers:
|
||||
header['P_int'] = (P_diluted, 'Integrated polarization degree')
|
||||
header['P_int_err'] = (np.ceil(P_diluted_err*1000.)/1000., 'Integrated polarization degree error')
|
||||
header['PA_int'] = (PA_diluted, 'Integrated polarization angle')
|
||||
header['PA_int_err'] = (np.ceil(PA_diluted_err*10.)/10., 'Integrated polarization angle error')
|
||||
header['P_int'] = (P_diluted, 'Integrated polarisation degree')
|
||||
header['P_int_err'] = (np.ceil(P_diluted_err*1000.)/1000., 'Integrated polarisation degree error')
|
||||
header['PA_int'] = (PA_diluted, 'Integrated polarisation angle')
|
||||
header['PA_int_err'] = (np.ceil(PA_diluted_err*10.)/10., 'Integrated polarisation angle error')
|
||||
|
||||
|
||||
return new_I_stokes, new_Q_stokes, new_U_stokes, new_Stokes_cov, new_data_mask, new_headers
|
||||
|
||||
Reference in New Issue
Block a user