diff --git a/package/lib/utils.py b/package/lib/utils.py index 204352a..e28bbff 100755 --- a/package/lib/utils.py +++ b/package/lib/utils.py @@ -39,23 +39,38 @@ def PCconf(QN, UN, QN_ERR, UN_ERR): conf[mask] = 1.0 - np.exp(-0.5 * chi2[mask]) return conf -def Centerconf(mask, PA, sPA): + +def CenterConf(mask, PA, sPA): """ Compute the confidence map for the position of the center of emission. """ chi2 = np.full(PA.shape, np.nan) conf = np.full(PA.shape, -1.0) yy, xx = np.indices(PA.shape) + def ideal(c): - itheta = np.degrees(np.arctan((yy+0.5-c[1])/(xx+0.5-c[0]))) - itheta[np.isnan(itheta)] = PA[np.isnan(itheta)] + itheta = np.full(PA.shape, np.nan) + itheta[(xx + 0.5) != c[0]] = np.degrees(np.arctan((yy[(xx + 0.5) != c[0]] + 0.5 - c[1]) / (xx[(xx + 0.5) != c[0]] + 0.5 - c[0]))) + itheta[(xx + 0.5) == c[0]] = PA[(xx + 0.5) == c[0]] return princ_angle(itheta) + def chisq(c): - return np.sum((princ_angle(PA[mask])-ideal((x,y))[mask])**2/sPA[mask]**2)/np.sum(mask) - for x,y in zip(xx[np.isfinite(PA)],yy[np.isfinite(PA)]): - chi2[y,x] = chisq((x,y)) - conf[mask] = 1.0 - np.exp(-0.5*chi2[mask]) - return conf + return np.sum((princ_angle(PA[mask]) - ideal((c[0], c[1]))[mask]) ** 2 / sPA[mask] ** 2) / np.sum(mask) + + for x, y in zip(xx[np.isfinite(PA)], yy[np.isfinite(PA)]): + chi2[y, x] = chisq((x, y)) + + from scipy.optimize import minimize + from scipy.special import gammainc + + conf[np.isfinite(PA)] = 1.0 - gammainc(0.5, 0.5 * chi2[np.isfinite(PA)]) + result = minimize(chisq, np.array(PA.shape) / 2.0, bounds=[(0, PA.shape[1]), (0.0, PA.shape[0])]) + if result.success: + print("Center of emission found") + else: + print("Center of emission not found") + return conf, result.x + def sci_not(v, err, rnd=1, out=str): """ diff --git a/package/test_center.py b/package/test_center.py new file mode 100644 index 0000000..54c21d4 --- /dev/null +++ b/package/test_center.py @@ -0,0 +1,99 @@ +import matplotlib.pyplot as plt +import numpy as np +from astropy.io.fits import open as fits_open +from astropy.wcs import WCS +from lib.utils import CenterConf, PCconf +from matplotlib.colors import LogNorm +from matplotlib.patches import Rectangle + +levelssnr = np.array([3.0, 4.0]) +levelsconf = np.array([0.99]) + +NGC1068 = fits_open("./data/NGC1068/5144/NGC1068_FOC_b0.05arcsec_c0.07arcsec.fits") +NGC1068conf = PCconf( + NGC1068["Q_STOKES"].data / NGC1068["I_STOKES"].data, + NGC1068["U_STOKES"].data / NGC1068["I_STOKES"].data, + np.sqrt(NGC1068["IQU_COV_MATRIX"].data[1, 1]) / NGC1068["I_STOKES"].data, + np.sqrt(NGC1068["IQU_COV_MATRIX"].data[2, 2]) / NGC1068["I_STOKES"].data, +) +NGC1068mask = NGC1068["DATA_MASK"].data.astype(bool) +NGC1068snr = np.full(NGC1068mask.shape, np.nan) +NGC1068snr[NGC1068["POL_DEG_ERR"].data > 0.0] = ( + NGC1068["POL_DEG_DEBIASED"].data[NGC1068["POL_DEG_ERR"].data > 0.0] / NGC1068["POL_DEG_ERR"].data[NGC1068["POL_DEG_ERR"].data > 0.0] +) + +NGC1068centconf, NGC1068center = CenterConf(NGC1068conf > 0.99, NGC1068["POL_ANG"].data, NGC1068["POL_ANG_ERR"].data) + +figngc, axngc = plt.subplots(1, 2, layout="tight", figsize=(18,9), subplot_kw=dict(projection=WCS(NGC1068[0].header))) + +axngc[0].set(xlabel="RA", ylabel="DEC", title="NGC1069 intensity map with SNR and confidence contours") +imngc = axngc[0].imshow(NGC1068["I_STOKES"].data * NGC1068["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(), cmap="inferno") +ngcsnrcont = axngc[0].contour(NGC1068snr, levelssnr, colors="b") +ngcconfcont = axngc[0].contour(NGC1068conf, levelsconf, colors="r") +ngcconfcenter = axngc[0].plot(*np.unravel_index(np.argmax(NGC1068centconf), NGC1068centconf.shape)[::-1], "k+", label="Best confidence for center") +ngcconfcentcont = axngc[0].contour(NGC1068centconf, 1.-levelsconf, colors="k") +handles, labels = axngc[0].get_legend_handles_labels() +labels.append("SNR contours") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcsnrcont.collections[0].get_edgecolor()[0])) +labels.append("CONF99 contour") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcconfcont.collections[0].get_edgecolor()[0])) +labels.append("Center CONF99 contour") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngcconfcentcont.collections[0].get_edgecolor()[0])) +axngc[0].legend(handles=handles, labels=labels) + +axngc[1].set(xlabel="RA", ylabel="DEC", title="Location of the nucleus confidence map") +ngccent = axngc[1].imshow(NGC1068centconf, vmin=0.0, cmap="inferno") +ngccentcont = axngc[1].contour(NGC1068centconf, 1.-levelsconf, colors="grey") +ngccentcenter = axngc[1].plot(*np.unravel_index(np.argmax(NGC1068centconf), NGC1068centconf.shape)[::-1], "k+", label="Best confidence for center") +handles, labels = axngc[1].get_legend_handles_labels() +labels.append("CONF99 contour") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=ngccentcont.collections[0].get_edgecolor()[0])) +axngc[1].legend(handles=handles, labels=labels) + +figngc.savefig("NGC1068_center.pdf",dpi=150,facecolor="None") + +################################################################################################### + +MRK463E = fits_open("./data/MRK463E/5960/MRK463E_FOC_b0.05arcsec_c0.07arcsec.fits") +MRK463Econf = PCconf( + MRK463E["Q_STOKES"].data / MRK463E["I_STOKES"].data, + MRK463E["U_STOKES"].data / MRK463E["I_STOKES"].data, + np.sqrt(MRK463E["IQU_COV_MATRIX"].data[1, 1]) / MRK463E["I_STOKES"].data, + np.sqrt(MRK463E["IQU_COV_MATRIX"].data[2, 2]) / MRK463E["I_STOKES"].data, +) +MRK463Emask = MRK463E["DATA_MASK"].data.astype(bool) +MRK463Esnr = np.full(MRK463Emask.shape, np.nan) +MRK463Esnr[MRK463E["POL_DEG_ERR"].data > 0.0] = ( + MRK463E["POL_DEG_DEBIASED"].data[MRK463E["POL_DEG_ERR"].data > 0.0] / MRK463E["POL_DEG_ERR"].data[MRK463E["POL_DEG_ERR"].data > 0.0] +) + +MRK463Ecentconf, MRK463Ecenter = CenterConf(MRK463Econf > 0.99, MRK463E["POL_ANG"].data, MRK463E["POL_ANG_ERR"].data) + +figmrk, axmrk = plt.subplots(1, 2, layout="tight", figsize=(18,9), subplot_kw=dict(projection=WCS(MRK463E[0].header))) + +axmrk[0].set(xlabel="RA", ylabel="DEC", title="NGC1069 intensity map with SNR and confidence contours") +immrk = axmrk[0].imshow(MRK463E["I_STOKES"].data * MRK463E["I_STOKES"].header["PHOTFLAM"], norm=LogNorm(), cmap="inferno") +mrksnrcont = axmrk[0].contour(MRK463Esnr, levelssnr, colors="b") +mrkconfcont = axmrk[0].contour(MRK463Econf, levelsconf, colors="r") +mrkconfcenter = axmrk[0].plot(*np.unravel_index(np.argmax(MRK463Ecentconf), MRK463Ecentconf.shape)[::-1], "k+", label="Best confidence for center") +mrkconfcentcont = axmrk[0].contour(MRK463Ecentconf, 1.-levelsconf, colors="k") +handles, labels = axmrk[1].get_legend_handles_labels() +labels.append("SNR contours") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrksnrcont.collections[0].get_edgecolor()[0])) +labels.append("CONF99 contour") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkconfcont.collections[0].get_edgecolor()[0])) +labels.append("Center CONF99 contour") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkconfcentcont.collections[0].get_edgecolor()[0])) +axmrk[0].legend(handles=handles, labels=labels) + +axmrk[1].set(xlabel="RA", ylabel="DEC", title="Location of the nucleus confidence map") +mrkcent = axmrk[1].imshow(MRK463Ecentconf, vmin=0.0, cmap="inferno") +mrkcentcont = axmrk[1].contour(MRK463Ecentconf, 1.-levelsconf, colors="grey") +mrkcentcenter = axmrk[1].plot(*np.unravel_index(np.argmax(MRK463Ecentconf), MRK463Ecentconf.shape)[::-1], "k+", label="Best confidence for center") +handles, labels = axmrk[1].get_legend_handles_labels() +labels.append("CONF99 contour") +handles.append(Rectangle((0, 0), 1, 1, fill=False, ec=mrkcentcont.collections[0].get_edgecolor()[0])) +axmrk[1].legend(handles=handles, labels=labels) + +figmrk.savefig("MRK463E_center.pdf",dpi=150,facecolor="None") +plt.show()