Projet informatique, programmation orientée objet.

Méthode d’optimisation :
Simulated Annealing ou le "recuit simulé".

Mode d’emploi.

Thibault Barnouin

23 mars 2020

Table des matiéres
1 Principe d’utilisation.

2 Les méthodes spécifiques.
2.1 Méthodes associées aux objetsdetypeData.
2.2 Méthodes associées aux objetsde typeModel. L.
2.3 Méthodes associées aux objets de type OptimisationMethod.

3 Exemples d’'utilisation.
3.1 Approximation linéaire dunmodelebruité L L o oL
3.2 Approximation polynomiale d'un modéle bruité L
3.3 Application au probléeme du voyageur de commerce

Commentaires supplémentaires

1 Principe d’utilisation.

Dans ce mode d’emploi, j'explique I'utilisation du code d’optimisation dont la structure est décrite dans
la Rapport de Projet.

De facon générale, pour optimiser un modéle sur un set de données il faudra le faire de la facon
suivante :

1. Importer les données dans un objet de type Data,

2. Créer un objet de type d'un modele choisi (noté ici ModeleChoisi) basé sur les données
précédemment importées,

3. Créer un pointeur de type Model vers le modele ainsi créé,

4. Créer un objet de type d'une méthode d’optimisation choisie (pour ce projet seul SimulatedAnnealing
a été implémenté) basé sur le pointeur précédemment créé,

5. Initialiser, exécuter et finaliser la méthode d’optimisation.

2 Les méthodes spécifiques.

2.1 Méthodes associées aux objets de type Data.

Cet objet dispose de plusieurs constructeurs. Supposons que nous voulons créer un objet X de type
Data:
- Data X crée I'ensemble vide nommé Data_0;
- Data X(Y) récupere I'’ensemble et le nom de I'objet donné Y’;
- Data X("donnéesX") crée I'ensemble vide nommé donnéesX;
- Data X(vector<vector<double» Tab, "donnéesX") crée I'ensemble Tab nommé donnéesX.

Il dispose aussi de méthodes de génération de données aléatoires :
- randSet(int N) crée un ensemble de N points uniformément tirés dans le carré [[0;1],[0;1]];
- randSet(int N, double xa, double xb, double ya, double yb) crée un ensemble de N points
uniformément tirés dans le carré [[xa ;ya],[xb ;yb]];
- randSet(int N, int d, double mu) crée un ensemble de N points associés a un modele polynomial
aléatoire de degré d avec un bruit moyen mu.

X.fromFile("path") importe les données du fichier situé a path (ce fichier doit comporter les données
sous forme de 2 colonnes de nombres flottants séparées d'un espace).

On peut récupérer et modifier ses attributs via les accesseurs et mutateurs :
- getData() retourne un ensemble de données, de type vector<vector<double ;
setData(vector<vector<double») modifie 'ensemble de données;
- getName() retourne le nom de I'ensemble, de type string;
- setName(string) modifie le nom de I'ensemble.

Pour I'export des données :
- displayData() affiche les données via une fenétre gnuplot;
- exportData() crée un fichier d’extension .data portant le nom de I'’ensemble et contenant les points
de I'ensemble (sous formes de 2 colonnes de nombres flottants séparées d'un espace).

2.2 Méthodes associées aux objets de type Model.

Cet objet dispose de plusieurs constructeurs. Supposons que nous voulons créer un objet A de type
ModeleChoisi (on verra en fin de cette section les différents modeles implémentés et leurs spécificités) :
- ModeleChoisi A crée un modele vide (les ensembles de données expérimentales et obtenues par les
modele sont vides) avec la fonction de cotit associée au modele;
- ModeleChoisi A(B) récupére les attributs de 1'objet donné B;
- ModeleChoisi A(Data X) crée un modele basé sur les données expérimentales X.

On peut modifier les attributs via les mutateurs :
- setModelData(Data) modifie 'ensemble de données du modeéle;
- setExpData(Data) modifie 'ensemble de données expérimentales;
- setCost(CostFunction*) modifie la fonction du cott associée au modéle;
- setParam(vector<double>) modifie les parameétres du modeéle.

Pour récupérer les valeurs des attributs via les accesseurs :
- getSol() retourne 'ensemble de données du modele, de type Data;
- getParam() retourne les parameétres du modele, de type vector<double>;
- getCost() retourne le colit associé au modele (comparaison des données expérimentales et
modélisées), de type double;
- getNeighbor() retourne les parametres d'un modeéle wvoisin du modeéle courant, de type
vector<double>.

Pour I'export des données :
- displayModel() affiche les données expérimentales et modélisées via une fenétre gnuplot,
- exportModel() crée un fichier d’extension .data portant le nom du modeéle et contenant les points
expérimentaux et modélisés (sous formes de 4 colonnes de nombres flottants séparées d'un espace).

Les différents modéles implémentés et leurs spécificités :

¢ LinearApprox est un modele linéaire, la fonction de cofit associée est y2 I'écart quadratique, les
parameétres associés sont 'ordonnée a I'origine et la pente, un modele voisin est un modele pour
lequel les parametres courants ont été légérement perturbés;

¢ Polynomial Approx est un modele polynomial, la fonction de cotit associée est y2 I'écart quadratique,
les parametres associés sont les coefficients du polyndme modélisateur, un modele voisin est un
modele pour lequel les parameétres courants ont été légerement perturbés;

e TSP est un modele du voyageur de commerce (Traveling SalesPerson), la fonction de cofit associé
est la distance totale, les parametres associés sont I'ordre de visite des villes, il existe plusieurs
définitions du modeéle voisin : la définition retenue modifie I'ordre des villes d'un sous ensemble
du chemin parcouru par le modele courant.

2.3 Méthodes associées aux objets de type OptimisationMethod.

Cet objet dispose de plusieurs constructeurs. Supposons que nous voulons créer une méthode
d’optimisation M de type MethodeChoisie (la seule méthode implémentée pour ce projet est celle dite du
"recuit simulé" (Simulated Annealing) que l'on précisera par la suite). :

- MethodeChoisie M est un constructeur spécifique a la méthode qui initialise des parameétres par
défaut pour un modéele vide;

- MethodeChoisie M(Modelx A) construit la méthode et initialise des parameétres par défaut pour
optimiser le modele pointé par A.

Pour utiliser la méthode :
- initialise() initialise les parametres a partir des valeurs entrées dans le ficher header correspondant a
la méthode choisie;
- execute() exécute la méthode d’optimisation;
- finalise() exporte et affiche le modele optimisé.

La seule méthode implémentée pour ce projet informatique est la méthode dite du "recuit simulé"
(Simulated Annealing). On l'appelle par SimulatedAnnealing, ses parametres sont : I'amplitude des
perturbations, la température initiale et la température finale du modele, le taux de refroidissement, le
nombre d’itération a une température constante et le nombre maximal de rejet de solutions avant de
considérer le modele gelé.

SimulatedAnnealing M(Model* A, double ampl, double T;y;, double Tf;,, double 77,4i4, int Nisor, int mge)
permet de construire la méthode avec les parametres de notre choix sans passer par la modification des
variables dans SimulatedAnnealingParameters.h (/\ dans ce cas ne pas utiliser M.initialise()).

3 Exemples d'utilisation.

3.1 Approximation linéaire d’'un modele bruité

#include <stdlib.h>
#include <time.h>
#include "models.h"
#include "methods.h"

int main(){
srand (time (NULL)) ;

//Créer un ensemble de données Expl nommé "Ezpériencel”

Data Expl("Experiencel");

//Générer 100 point aléatoirement suivant un modéle affine (polynomial de degré 1)
Expl.randSet(100,1,1.);

//Créer un modéle linéaire basé sur les données expérimentales Ezpl

LinearApprox Linl(Expl);

//Créer un pointeur de type Model wvers le modéle linéaire
Model* Modl = new LinearApprox(Linl);

//Créer la méthode d'optimisation pour le modéle linéaire
SimulatedAnnealing Optil(Modl) ;

Optil.initialise();

Optil.execute();

Optil.finalise();

free(Mod1);

return O;

3.2 Approximation polynomiale d'un modéle bruité

#include <stdlib.h>
#include <time.h>
#include "models.h"
#include "methods.h"

int main(){
srand (time (NULL)) ;

//Créer un ensemble de données Exp2 nommé "Ezpériencel"

Data Exp2("Experience2");

//Générer 100 point aléatoirement sutvant un modéle polynomial de degré 2
Exp2.randSet (100,2,1.);

//Créer un modéle polynomial de degré 2 basé sur les données expérimentales Exp2
PolynomialApprox Pol2(Exp2,2);

//Créer un pointeur de type Model vers le modéle polynomial
Model* Mod2 = new PolynomialApprox(Pol2);

//Créer la méthode d'optimisation pour le modéle polynomial

SimulatedAnnealing Opti2(Mod2);
Opti2.initialise();
Opti2.execute();
Opti2.finalise();

free(Mod2) ;

return 0;

3.3 Application au probléme du voyageur de commerce

#include <stdlib.h>
#include <time.h>
#include "models.h"
#include "methods.h"

int main(){
srand (time (NULL)) ;

//Créer un ensemble de données Villes nommé "30Villes"

Data Villes("30Villes");

//Générer 30 point distribué uniformément sur le carré [[0;1],[0;1]]
Villes.randSet (30);

//Créer un modéle du voyageur de commerce sur la base de la distribution Villes
TSP TSP30(Villes);

//Créer un pointeur de type Model vers le modéle du voyageur de commerce
Model* Mod = new TSP(TSP30);

//Créer la méthode d'optimisation pour le modéle du voyageur de commerce
SimulatedAnnealing Opti(Mod);

Opti.initialise();

Opti.execute();

Opti.finalise();

free(Mod) ;

return 0;

Commentaires supplémentaires.

Le code ainsi écrit permet facilement d’ajouter des modeles ou méthodes d’optimisation.

Pour la génération aléatoire de données, il pourrait étre intéressant d’ajouter un méthode qui prend
en argument un pointeur vers une fonction-modele définie par I'utilisateur. De la méme facon, un modele
basé sur une fonction définie par 'utilisateur pourrait aussi étre pertinent.

On a pu le voir pour la méthode de "recuit simulé"”, I'efficacité d’optimisation de la méthode dépend
trés fortement du modele étudié. Une optimisation des parametres de la méthode par rapport au modele
serait alors une bonne facon d’optimiser I'optimisation!

