
UML
Diagramme des classes
F.Roda 2009

Introduction

• Le diagramme des classes contient
principalement des classes

• Une classe contient des attributs et des
opérations

• Le diagramme des classes n’indique pas
comment utiliser les opérations

• C’est une description statique

Définition

• Une classe est une description d’un ensemble
d’objets ayant une sémantique, des attributs, des
méthodes et des relations en commun.

• Un objet est une instance d’une classe

Représentation simplifiée d’une classe

NomCLasse

nomAttribut1

nomAttribut2

nomAttribut3

nomMéthod1()

nomMéthod2()

Nom de la classe

• Le nom d’une classe est au singulier
• Il est constitué d’un nom commun
• Ce nom est significatif de l’ensemble des objets

constituant la classe
• Il représente la nature des instances d’une classe

[<<stéréotype>>]

[<NomDuPackage1>::..:<NomDuPaquetage N>::]

<NomDeLaClasse> [{ [abstract] , [auteur] , [état] , …. }

Attributs

• Ceux-ci contiennent l’information portée par un objet.

• L’ensemble des attributs forme la structure de l’objet

NomClasse

<modificateur d’accès> [/]<NomAttribut>:

<NomClasse>[`[`multiplicité`]`] [= valeur(s) initiale(s)]

Méthodes

• Celles-ci correspondent aux services offerts par l’objet
• Elles peuvent modifier la valeur des attributs
• L’ensemble des méthodes forme le comportement de

l’objet

NomClasse

<modificateur d’accés><nomDeLa Méthode ([paramètres])>:

[<valeurRenvoyée>][{propriété}]

Encapsulation

• Elle permet de définir les droits d’accès aux propriétés
d’une classe.

• UML définit quatre niveaux d’encapsulation d’une
propriété d’une classe

public + Élément non encapsulé visible par tous

protégé # Élément encapsulé visible dans le

sous-classes de la classe

privé - Élément encapsulé visible seulement

dans la classe

paquetage ~ Élément encapsulé visible seulement

dans le s classes même paquetage

Relation entre classes: associations

Rôle

Exemple

Association Ternaire

Exemple

Cardinalité des associations

Spécification Cardinalités

0…1 zéro ou une fois

1 une et une seule fois

* de zéro à plusieurs fois

1…* de un à plusieurs fois

M…N Entre M et N fois

N N fois

Navigation

• Spécifier le sens de navigation utile se fait en dessinant

l’association sous forme d’une flèche

Association réflexive

Les classes-association

• Le liens entre les instances de classe peuvent porter des
informations

• Dans ce cas, l’association qui décrit de tels liens reçoit le
statut de classe

Objets composés: Association forte ou

Composition

• Les composants sont une partie de l’objet composé

• Chaque composant ne peut ainsi être partagé entre
plusieurs objets composés

• La cardinalité maximale, au niveau de l’objet composé, est
obligatoirement de un

• La suppression de l’objet composé entraine la suppression
de ces composants

Composition

Association faible ou Agrégation

• Les composants peuvent être partagés par
plusieurs composés

• La destruction du composé ne conduit pas à la
destruction des composants

• Il est possible d’utiliser seulement l’agrégation
puis, plus tard, de déterminer quelles
associations d’agrégation sont des associations
de composition

Association

Généralisation - spécialisation
• Une classe est plus spécifique qu’une autre si

toutes ses instances sont également instances de
cette autre classe

• La classe plus spécifique est dite sous-classe de
l’autre classe

• Cette dernière, plus générale, est dite sur-classe

Généralisation

Généralisation

Héritage

• Les instances d’une classe sont aussi instances
de ses surclasses

• Elles profitent des attributs et des méthodes
introduits au niveau de leur surclasses

Classes concrètes et abstraites

• Une classe concrète possède des instances

• Elle constitue un modèle complet d’objet: tous les
attributs et méthodes sont complètement décrits

• Une classe abstraite ne peut pas posséder d’instance
directe car elle ne fournit pas une description complète

• Elle a pour vocation de posséder des sous classes
concrètes et sert à factoriser des attributs et méthodes
communs à ses sous classes.

• Une classe est représentée par le stéréotype
<<abstract>>

Concrètes et abstraites

Interface

• Une interface est une classe totalement abstraite: sans
attributs et dont toutes les méthodes sont publiques

• L’implantation des méthodes est réalisée par une ou
plusieurs classes concrètes, sous classes de l’interface

• La relation d’héritage qui existe entre l’interface et une
sous classe d’implantation est appelée relation de
réalisation

• Elle est représentée par un trait pointillé

Réalisation

