Rapport de projet informatique, programmation orientée objet.

Méthode d’optimisation :
Sitmulated Annealing ou le "recuit simulé".

Thibault Barnouin

5 mars 2020

1 Le projet

Un algorithme d’optimisation cherche & déterminer un jeu de paramétres qui minimise (ou
maximise) une fonction ou un modeéle donné. Il existe plusieurs méthodes d’optimisation. Une méthode
de type force brute teste toute les solutions possible pour en déterminer la meilleure. Ce type de méthode
n’est cependant plus utilisable lorsque ’espace des solutions devient trop grand, voire méme continu ou
infini. Une méthode heuristique cherche une solution réalisable, pas nécessairement la plus optimale,
pour un probléme d’optimisation difficile.

La méthode de "recuit simulé" est une méthode heuristique qui tire son inspiration de pratiques
issues de la thermodynamique : un systéme qui refroidit lentement peut atteindre un niveau d’énergie
plus bas, et donc étre plus stable. Cette méthode s’appuie ainsi sur un refroidissement lent, autorisant
des temps suffisamment longs pour que les solutions se redistribuent au fur et & mesure que leur énergie
diminue. Elle permet d’explorer un voisinage d’une solution sans pour autant se bloquer dans des zones
de minimum (ou maximum) local de la fonction ou du modéle étudié et ainsi atteindre un extremum
global.

Le but du projet est de mettre au profit la programmation orientée objet en C++ pour coder
un algorithme d’optimisation de type "recuit simulé" et 'appliquer a I'approximation de données
expérimentales par des modéles et a la résolution du probléme du Voyageur de Commerce.

2 Le code

2.1 Pertinence de la programmation orientée objet pour la réalisation
de ce projet

Ce projet implique 'application d’un algorithme général, I’algorithme de "recuit simulé". Chaque
modéle & optimiser par 'algorithme général doit répondre aux questions suivantes : Qu’est-ce qu’une
solution 7 Qu’est-ce qui est considéré comme une solution voisine ? Quel est le cotdt d’une solution ?

L’utilisation de classes avec des méthodes spécifiques répondant & chacune de ces questions facilite
I'implémentation du programme.

2.2 Les classes

Dans un premier temps, je crée une classe Data pour la gestion et 'export des données étudiées
et générées par des modéles. Une classe abstraite CostFunction permet la définition par héritage de
fonctions définissant les cotits associés au différents modéles (on peut penser au moindre carré x?
pour I'approximation de fonctions, ou a la distance pour le probléme du voyageur de commerce). Les
modéles & optimiser sont définis en héritage d’une classe abstraite Model qui a comme attributs des
objets de type Data pour les données expérimentales et du modéle (composition) et un pointeur vers une
CostFunction associée au modeéle (aggrégation). Chaque modéle hérite de ces attributs et y ajoute un
jeu de paramétres. Il définit aussi les méthodes donnant le codt de la solution et la solution voisine. On
peut ainsi définir les modéles pour une approximation linéaire, polynomiale ou pour trouver un chemin
dans le probléme du Voyageur de Commerce. Enfin, je crée une classe abstraite OptimizationMethod
qui prend en attribut un pointeur vers un Model & optimiser (aggrégation) et définit les méthodes
d’exécution et d’export de 'algorithme d’optimisation. Les différentes méthodes d’optimisation sont
définies par héritage et ont chacune en attributs leur différents paramétres.

Cette architecture de classes est résumée dans le diagramme de classes (voir Figure 1).

OptimizationMethod
— | # ToAdjust
+ OptimizationMethod()
+ OptimizationMethod()
+ ~OptimizationMethod()
+ initialise()
+ execute()
+ finalise()
i
#m_data SimulaledAnnealing
Data #exp_data - e

Svectorsvectorsdouble>>] ..

g + SimulatedAnnealing()
+ Data.() 5 rrealingl)
+ Data()

+ Dataf)
+ Datal()
+ ~Dataf()
+ randSet()
+ randSet()
+ randSet() =ToAdjust Model
&2 aﬂ—ﬂ“e{) L @ | #m_data
+ fromFile() .| #exp data
and 8 more | #m_cost
+ Model()
+ Model()
= + Model()
CostFunction #m_cost + ~Maodel()
+ setModelData)
+ satExpData()
GostFuncti + setCost()
+ GoatFumstion + getSal)
+ ~CostFunction() + selParam()
+ getl) U g:g;mﬂ
+ mighbor()
A + getCost()
__..n’) ﬂ + exportModel() Q

= Khi2{
+ Khi2{
= Kni?{
+ ~Khi2i)

LinearAporox Paly nomial Approx Isp

+ solDatal + LincarApprox()
+ et + LineatAppiox(
- + LineatAppioxi)

——— Represente I'héritage.
— > Représente I'aggrégation.
——= Représente la composition.

FIGURE 1 — Diagramme de classes.

3 Applications de l’algorithme d’optimisation

3.1 Approximation de données avec un modéle

Afin de tester le fonctionnement des classes et méthodes et pour une premiére utilisation de
I’algorithme d’optimisation, je génére des données arbitraires suivant un modéle linéaire ou polynomial
auquel j’ajoute un bruit aléatoire et j’utilise 'algorithme d’optimisation pour retrouver les paramétres
du modéle qui a généré ces données. J’obtiens ainsi les sorties de la Figure 2.

inearApprax Palynamialippras PalynomialAppras

P &
T %

2 " s000 |

3
3

L s . A

4 + su |

: .

el :

o 2 1 %
:

FIGURE 2 — Approximation de fonctions a l’aide de ’algorithme de recuit simulé.
A gauche une fonction linéaire, au milieu une fonction polynomiale de degré 2, a droite une fonction
polynomiale de degré 4, toutes avec du bruit aléatoire.

3.2 Résolution du probléme du Voyageur de Commerce

Pour résoudre le probléme du Voyageur de Commerce, je génére un ensemble de N villes distribuées
dans un carré de cété 1. La premiére solution est un chemin passant par les villes dans leur ordre
de génération. Je définis ensuite de plusieurs fagons la solution voisine et je cherche celle qui est la
plus efficace pour répondre au probléme a 'aide de 'algorithme de "recuit simulé". On peut voir des
résultats générés avec la méme graine mais obtenus avec des définitions de voisinage différentes en
Figure 3.

FIGURE 3 — Tentative de résolution du probléme du Voyageur de Commerce en modifiant la définition
de solution voisine.

A gauche : deux villes sont échangées dans l'ordre initial. Au milieu : une ville est placée a la fin du
chemin. A droite : un sous-ensemble du chemin est mélangé.

L’obtention d’une solution est trés sensible aux paramétres entrés dans la méthode de "recuit
simulé". Je cherche donc & affiner les paramétres pour les adapter au probléme étudié et ainsi obtenir
une "bonne solution" en un temps raisonnable. Je teste ces paramétres sur une graine de génération
fixe et j'obtiens les résultats en Figure 4.

TSP25Villes TSP25Villes
1 T T T T T T T T 1 T T T T T T T T
51 A
* 4 e
4 L 4 e + P) A —
oo \ A \ / 1 oo > \ - 1
+ +
08 - / \ 4 g 08 / 4 e 1
== * ot -
07 | v * 4 07 | | T 4
J |
[H
+ . i
06 - e 1 05 I 1
‘; o ‘- .
sl | - - e -k] os | i + ~F]
i |
1 |
04 + " 1 04 + -+ 1
*- o T N
03 T 1 03 T 1
* * \,
02 f + 02 f]
o1 L s | . L ! " L L o1 My s | . L ! " L L
0 01 02 0.3 04 05 0.6 07 08 09 1 0 01 02 0.3 04 05 0.6 07 08 09 1
Experimental Data + Experimental Data +
Short path estimation with distance-4.92173 —— Short path estimation with distance-5.23538 ————

FIGURE 4 — Tentative de résolution du probléme du Voyageur de Commerce en modifiant les paramétres
de 'algorithme d’optimisation.

4 Bilan du projet

4.1 Les résultats

Le programme ainsi codé et compilé permet d’obtenir rapidement de bons résultats pour
I’approximation de données expérimentales avec des fonctions linéaires ou polynomiales. Je suis parvenu
a trouver de bonnes définitions de voisinage de solution et de bons paramétres de ’algorithme de "recuit
simulé" pour résoudre le probléme du Voyageur de Commerce pour une trentaine de villes. Il m’est
plus difficile cependant de trouver les bons parameétres pour un grand nombre de villes et les solutions
sont obtenues plus lentement et ne sont pas les plus optimales que je puisse espérer.

4.2 Pour aller plus loin

Afin d’améliorer la résolution de probléme par 'optimisation il serait intéressant de trouver de
nouvelles définitions de solution voisine ainsi que les paramétres d’optimisation associés & chaque
modéle et & son voisinage.

J’ai pensé les classes de fagons & ce que le code soit facilement modulable. En effet, il est simple
d’ajouter des méthodes d’optimisation, modéles ou fonctions de cotit en héritage des classes abstraites
qui s’articulent toujours de la méme fagon. Je pourrais donc reprendre ce code dans le futur pour

I’améliorer et le diversifier.

