
Rapport de projet informatique, programmation orientée objet.

Méthode d’optimisation :
Simulated Annealing ou le "recuit simulé".

Thibault Barnouin

5 mars 2020

1 Le projet

Un algorithme d’optimisation cherche à déterminer un jeu de paramètres qui minimise (ou
maximise) une fonction ou un modèle donné. Il existe plusieurs méthodes d’optimisation. Une méthode
de type force brute teste toute les solutions possible pour en déterminer la meilleure. Ce type de méthode
n’est cependant plus utilisable lorsque l’espace des solutions devient trop grand, voire même continu ou
infini. Une méthode heuristique cherche une solution réalisable, pas nécessairement la plus optimale,
pour un problème d’optimisation difficile.

La méthode de "recuit simulé" est une méthode heuristique qui tire son inspiration de pratiques
issues de la thermodynamique : un système qui refroidit lentement peut atteindre un niveau d’énergie
plus bas, et donc être plus stable. Cette méthode s’appuie ainsi sur un refroidissement lent, autorisant
des temps suffisamment longs pour que les solutions se redistribuent au fur et à mesure que leur énergie
diminue. Elle permet d’explorer un voisinage d’une solution sans pour autant se bloquer dans des zones
de minimum (ou maximum) local de la fonction ou du modèle étudié et ainsi atteindre un extremum
global.

Le but du projet est de mettre au profit la programmation orientée objet en C++ pour coder
un algorithme d’optimisation de type "recuit simulé" et l’appliquer à l’approximation de données
expérimentales par des modèles et à la résolution du problème du Voyageur de Commerce.

2 Le code

2.1 Pertinence de la programmation orientée objet pour la réalisation
de ce projet

Ce projet implique l’application d’un algorithme général, l’algorithme de "recuit simulé". Chaque
modèle à optimiser par l’algorithme général doit répondre aux questions suivantes : Qu’est-ce qu’une
solution ? Qu’est-ce qui est considéré comme une solution voisine ? Quel est le coût d’une solution ?

L’utilisation de classes avec des méthodes spécifiques répondant à chacune de ces questions facilite
l’implémentation du programme.

1



2.2 Les classes
Dans un premier temps, je crée une classe Data pour la gestion et l’export des données étudiées

et générées par des modèles. Une classe abstraite CostFunction permet la définition par héritage de
fonctions définissant les coûts associés au différents modèles (on peut penser au moindre carré χ2

pour l’approximation de fonctions, ou à la distance pour le problème du voyageur de commerce). Les
modèles à optimiser sont définis en héritage d’une classe abstraite Model qui a comme attributs des
objets de type Data pour les données expérimentales et du modèle (composition) et un pointeur vers une
CostFunction associée au modèle (aggrégation). Chaque modèle hérite de ces attributs et y ajoute un
jeu de paramètres. Il définit aussi les méthodes donnant le coût de la solution et la solution voisine. On
peut ainsi définir les modèles pour une approximation linéaire, polynomiale ou pour trouver un chemin
dans le problème du Voyageur de Commerce. Enfin, je crée une classe abstraite OptimizationMethod
qui prend en attribut un pointeur vers un Model à optimiser (aggrégation) et définit les méthodes
d’exécution et d’export de l’algorithme d’optimisation. Les différentes méthodes d’optimisation sont
définies par héritage et ont chacune en attributs leur différents paramètres.

Cette architecture de classes est résumée dans le diagramme de classes (voir Figure 1).

Figure 1 – Diagramme de classes.

2



3 Applications de l’algorithme d’optimisation

3.1 Approximation de données avec un modèle
Afin de tester le fonctionnement des classes et méthodes et pour une première utilisation de

l’algorithme d’optimisation, je génère des données arbitraires suivant un modèle linéaire ou polynomial
auquel j’ajoute un bruit aléatoire et j’utilise l’algorithme d’optimisation pour retrouver les paramètres
du modèle qui a généré ces données. J’obtiens ainsi les sorties de la Figure 2.

Figure 2 – Approximation de fonctions à l’aide de l’algorithme de recuit simulé.
A gauche une fonction linéaire, au milieu une fonction polynomiale de degré 2, à droite une fonction
polynomiale de degré 4, toutes avec du bruit aléatoire.

3.2 Résolution du problème du Voyageur de Commerce
Pour résoudre le problème du Voyageur de Commerce, je génère un ensemble de N villes distribuées

dans un carré de côté 1. La première solution est un chemin passant par les villes dans leur ordre
de génération. Je définis ensuite de plusieurs façons la solution voisine et je cherche celle qui est la
plus efficace pour répondre au problème à l’aide de l’algorithme de "recuit simulé". On peut voir des
résultats générés avec la même graine mais obtenus avec des définitions de voisinage différentes en
Figure 3.

Figure 3 – Tentative de résolution du problème du Voyageur de Commerce en modifiant la définition
de solution voisine.
A gauche : deux villes sont échangées dans l’ordre initial. Au milieu : une ville est placée à la fin du
chemin. A droite : un sous-ensemble du chemin est mélangé.

L’obtention d’une solution est très sensible aux paramètres entrés dans la méthode de "recuit
simulé". Je cherche donc à affiner les paramètres pour les adapter au problème étudié et ainsi obtenir
une "bonne solution" en un temps raisonnable. Je teste ces paramètres sur une graine de génération
fixe et j’obtiens les résultats en Figure 4.

3



Figure 4 – Tentative de résolution du problème du Voyageur de Commerce en modifiant les paramètres
de l’algorithme d’optimisation.

4 Bilan du projet

4.1 Les résultats
Le programme ainsi codé et compilé permet d’obtenir rapidement de bons résultats pour

l’approximation de données expérimentales avec des fonctions linéaires ou polynomiales. Je suis parvenu
à trouver de bonnes définitions de voisinage de solution et de bons paramètres de l’algorithme de "recuit
simulé" pour résoudre le problème du Voyageur de Commerce pour une trentaine de villes. Il m’est
plus difficile cependant de trouver les bons paramètres pour un grand nombre de villes et les solutions
sont obtenues plus lentement et ne sont pas les plus optimales que je puisse espérer.

4.2 Pour aller plus loin
Afin d’améliorer la résolution de problème par l’optimisation il serait intéressant de trouver de

nouvelles définitions de solution voisine ainsi que les paramètres d’optimisation associés à chaque
modèle et à son voisinage.

J’ai pensé les classes de façons à ce que le code soit facilement modulable. En effet, il est simple
d’ajouter des méthodes d’optimisation, modèles ou fonctions de coût en héritage des classes abstraites
qui s’articulent toujours de la même façon. Je pourrais donc reprendre ce code dans le futur pour
l’améliorer et le diversifier.

4


