
MAP 572 - Mise en oeuvre de méthodes numériques.

François Alouges, Lucas Gerin

Un exemple d'optimisation par chaîne de Markov : Le voyageur de commerce

Source : K. Helsgaun. Solving the Clustered Traveling Salesman Problem Using the

Lin-Kernighan-Helsgaun. Roskilde University, 2014.

Le contexte général est le suivant : soit E un (grand) ensemble �ni, et une fonction V : E → R. On
cherche à trouver x ∈ E tel que V (x) est le plus petit possible, l'ensemble E est tellement grand qu'une
recherche exhaustive est exclue.

Le principe de l'optimisation par chaîne de Markov, ou méthode MCMC (pour Monte Carlo Markov

Chain) est de parcourir de façon aléatoire mais intelligente l'ensemble E pour chercher à minimiser V .

1 L'algorithme de Metropolis-Hastings

On suppose que E est muni d'une structure de graphe : certains points x, y sont reliés par des arêtes,
on note alors x ∼ y. On suppose que le graphe est connexe. Le principe de l'algorithme de Metropolis-
Hastings est le suivant : on parcourt le graphe E en favorisant les arêtes qui font diminuer V , de temps
en temps on s'autorise à augmenter V pour ne pas rester bloqué dans un minimum local.

Voici l'algorithme :

Paramètres :

X0 ∈ E : valeur initiale
β ∈ [0,+∞)
T ∈ N : nombre d'itérations

Pour t = 0 à T − 1
y = v.a. uniforme parmi les voisins de Xt

Si V (y) < V (Xt) alors
Xt+1 = y

Sinon si V (y) ≥ V (Xt) alors
Xt+1 = y avec proba e−β(V (y)−V (Xt))

Renvoyer XT

E

e−β(V (y)−V (Xt))

1 Xt

y
x 7→ V (x)

Question 1. Que fait l'algorithme pour β = 0? pour β = +∞? Ce paramètre est parfois appelé
"inverse de la température".

On peut démontrer la chose suivante (c'est par exemple la combinaison des Théorème 6.2 et 5.5 dans
[1])



Théorème 1 Si le graphe associé à E est connexe, alors pour tout β > 0 on a

P(Xt = x)
t→+∞→ 1

Zβ
e−βV (x), avec Zβ =

∑
z∈E

e−βV (z).

Question 2. En quoi ce Théorème assure-t-il que l'algorithme de Metropolis-Hastings remplit l'objectif
de minimisation de V ? Quelles sont les limites de cet algorithme?

Question 3. Implémenter l'algorithme pour

• E = {1, 2, . . . , k}, avec k = 40,

• Graphe : chaque i est relié à i− 1 et i+ 1,

• V (x) = cos(4πx/k)−
√
4πx/k,

• di�érentes valeurs de β (on pourra prendre pour commencer T = 2000, β = 0.4).

Tracer à chaque fois quelques trajectoires de t 7→ V (Xt) et comparer avec le graphe de la fonction V .

2 Application au Problème du voyageur de commerce

On cherche maintenant à appliquer l'algorithme de Metropolis-Hastings au problème suivant. Soient
(X1, Y1), . . . , (Xn, Yn) les coordonnées de n villes dans le plan. On cherche le chemin le plus court
passant par toutes ces villes, c'est-à-dire la permutation σ? dans l'ensemble Sn des permutations de n
éléments telle que

σ? = argmaxσV (σ) := argmaxσ

n−1∑
i=1

‖ (Xσ(i+1), Yσ(i+1))− (Xσ(i), Yσ(i)) ‖

On met la structure suivante sur Sn : σ ∼ σ′ si l'on peut passer de σ à σ′ en permutant deux éléments.
Ainsi pour n = 4, on peut passer de 1234 à 2134,1324, 1243, 1432, 3214, 4231. De façon générale, σ a
toujours

(
n
2

)
permutations "voisines".

Question 4. On va représenter les coordonnées par une matrice Coordonnees de taille n × 2. Écrire
une fonction EchangerDeuxVilles(Coordonnees,i,j) qui permute deux indices i et j dans le tableau
des villes, et une fonction Longueur(Coordonnees) qui calcule la longueur d'un chemin.

Question 5. Implémenter l'algorithme de Metropolis-Hastings pour le problème du voyageur de com-
merce, sur le �chier de villes PaysMystere.xls téléchargeable sur le moodle (rappel : la commande
xlsread('PaysMystere.xls') permet de charger un �chier Excel).

Quelques conseils :

• Testez toutes vos fonctions et vos premiers codes sur des �chiers de villes simples avant de vous
attaquer à PaysMystere!

• Un choix de paramètre possible au début est T = 50000 itération, β = 2.

Remarque. Évaluer l'e�cacité d'un algorithme pour le voyageur de commerce est di�cile dans la
mesure où l'on ne connaît pas la longueur V (σ?) du chemin le plus court. Cependant, si les (Xi, Yi) sont
distribuées uniformément sur le carré [0, 1]2, on peut montrer qu'il existe c telle que V (σ?) ∼ c

√
n, des

travaux récents [2] suggèrent que c ≈ 0.712. Vous pouvez comparer cette borne au résultat donné par
votre algorithme.

References

[1] T.Bodineau. Modélisation de phénomènes aléatoires. Cours de l'École Polytechnique (2015).

[2] S.Steinerberger. New bounds for the traveling salesman constant. Advances in Applied Probability

vol.47 (2015) n.1, p.27-36.


