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Un exemple d’optimisation par chaine de Markov : Le voyageur de commerce

Source : K. Helsgaun. Solving the Clustered Traveling Salesman Problem Using the
Lin-Kernighan-Helsgaun. Roskilde Unwversity, 2014.

Le contexte général est le suivant : soit F un (grand) ensemble fini, et une fonction V' : E — R. On
cherche a trouver x € E tel que V() est le plus petit possible, 'ensemble E est tellement grand qu’une
recherche exhaustive est exclue.

Le principe de Poptimisation par chaine de Markov, ou méthode MCMC (pour Monte Carlo Markov
Chain) est de parcourir de fagon aléatoire mais intelligente l’ensemble E pour chercher & minimiser V.

1 L’algorithme de Metropolis-Hastings

On suppose que E est muni d’une structure de graphe : certains points x,y sont reliés par des arétes,
on note alors x ~ y. On suppose que le graphe est connexe. Le principe de l'algorithme de Metropolis-
Hastings est le suivant : on parcourt le graphe E en favorisant les arétes qui font diminuer V', de temps
en temps on s’autorise & augmenter V pour ne pas rester bloqué dans un minimum local.

Voici l'algorithme :

Parameétres :
Xy € E : valeur initiale
B € [0, +00) BV V(X))
T € N : nombre d’itérations € (ioy
o

Pourt=0a7T-1 g

y = v.a. uniforme parmi les voisins de X;

Si V(y) < V(Xy) alors >

Xi+1 =Yy
Sinon si V(y) > V(X;) alors
X;41 =y avec proba e ?
Renvoyer Xt

(V(y)=V (X))

Question 1. Que fait I'algorithme pour f = 07 pour 8 = +o0? Ce paramétre est parfois appelé
"inverse de la température".

On peut démontrer la chose suivante (c¢’est par exemple la combinaison des Théoréme 6.2 et 5.5 dans

[11)



Théoréme 1 Sile graphe associé & E est connexe, alors pour tout 8 > 0 on a

1
P(X; = x) e Z—e_'gv(z), avec Zg = Z e PV ),
B zelE

Question 2. En quoi ce Théoréme assure-t-il que 'algorithme de Metropolis-Hastings remplit I'objectif
de minimisation de V7?7 Quelles sont les limites de cet algorithme?

Question 3. Implémenter 'algorithme pour
o £ ={1,2,...,k}, avec k = 40,
e Graphe : chaque i est relié & ¢ —1et ¢+ 1,

o V(x)=cos(dmzx/k) — \/4Amzx/k,
e différentes valeurs de 8 (on pourra prendre pour commencer 7' = 2000, 5 = 0.4).

Tracer a chaque fois quelques trajectoires de t — V(X}) et comparer avec le graphe de la fonction V.

2 Application au Probléme du voyageur de commerce

On cherche maintenant & appliquer 'algorithme de Metropolis-Hastings au probléme suivant. Soient
(X1,Y1),...,(Xpn,Ys) les coordonnées de n villes dans le plan. On cherche le chemin le plus court
passant par toutes ces villes, c’est-a-dire la permutation o, dans I’ensemble &,, des permutations de n
éléments telle que

n—1
Ox = argmanV(J) i= argmax, Z H (Xa(i+1)7Y0(i+1)) - (Xa(i)7YJ(i)) ||
=1

On met la structure suivante sur &,, : 0 ~ ¢’ si I'on peut passer de o & ¢’ en permutant deux éléments.
Ainsi pour n = 4, on peut passer de 1234 & 2134,1324, 1243, 1432, 3214, 4231. De fagon générale, o a
toujours (%) permutations "voisines".

Question 4. On va représenter les coordonnées par une matrice Coordonnees de taille n x 2. Ecrire
une fonction EchangerDeuxVilles(Coordonnees,i,j) qui permute deux indices ¢ et j dans le tableau
des villes, et une fonction Longueur (Coordonnees) qui calcule la longueur d’un chemin.

Question 5. Implémenter I’algorithme de Metropolis-Hastings pour le probléme du voyageur de com-
merce, sur le fichier de villes PaysMystere.xls téléchargeable sur le moodle (rappel : la commande
x1lsread (’PaysMystere.x1ls’) permet de charger un fichier Excel).

Quelques conseils :

e Testez toutes vos fonctions et vos premiers codes sur des fichiers de villes simples avant de vous
attaquer & PaysMystere!

e Un choix de paramétre possible au début est T = 50000 itération, 5 = 2.

Remarque. Evaluer lefficacité d’un algorithme pour le voyageur de commerce est difficile dans la
mesure ou l'on ne connait pas la longueur V(o) du chemin le plus court. Cependant, si les (X;,Y;) sont
distribuées uniformément sur le carré [0, 1]%, on peut montrer qu’il existe ¢ telle que V(oy) ~ cy/n, des
travaux récents [2] suggérent que ¢ ~ 0.712. Vous pouvez comparer cette borne au résultat donné par
votre algorithme.
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