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This 15 the second in a series of three papers that empirically examine the competitiveness of simulated annecaling n certain
well-studied domains of combinatorial optimization. Simulated annealing 1s a randomized techmque proposed by S. Kirkpatrick,
C D. Gelatt and M P. Vecchi for improving local optimization algorithms. Here we report on experiments at adapting
simulated annealing to graph coloring and number partitioning, two problems for which local optimization had not previously
been thought suitable. For graph coloring. we report on three simulated anncaling schemes, all of which can dominate
traditional techniques for certain types of graphs, at least when large amounts of computing tume are available. For number
partitioning, simulated annealing is not competitive with the differencing algorithm of N. Karmarkar and R. M. Karp, except on
relatively small instances. Moreover, 1f running time 1s taken into account, natural annealing schemes cannot even outperform
multiple random runs of the local optimization algorithms on which they are based. in sharp contrast to the observed

performance of annealing on other problems

tmulated annealing is a new approach to the approxi-

mate solution of difficult combinational optimization
problems. It was originally proposed by Kirkpatrick.
Gelatt and Vecchi (1983) and Cerny (1985), who re-
ported promising results based on sketchy experiments.
Since then there has been an immense outpouring of
papers on the topic, as documented in the extensive
bibliographies of Collins, Eglese and Golden (1988) and
Van Laarhoven and Aarts (1987). The question of how
well annealing stacks up against its more traditional
competition has remained unclear, however, for a vari-
ety of important applications. The series of papers,
of which this is the second, attempts to rectify this
situation.

In Part I (Johnson et al. 1989). we describe the
simulated annealing approach and its motivation, and
report on extensive experiments with it in the context of
the graph partitioning problem (given a graph G =
(V, E), find a partition of the vertices into two equal-
sized sets V| and V,, which minimizes the number of
edges with endpoints in both sets). We were concerned
with two main issues: 1) how the various choices made
in adapting simulated annealing to a particular problem
affect its performance. and 2) how well an optimized
annealing implementation for graph partitioning com-
petes against the best of the more traditional algorithms
for the problem. (For graph partitoning, the answer to
the second question was mixed: simulated annealing
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tends to dominate traditional techniques on random
graphs as the size and/or density of the graphs increascs,
but was roundly beaten on graphs with built-in geometric
structure.)

In this paper. we consider the same issues in the
context of two additional well-studied, NP-hard combi-
natorial optimization problems: graph coloring and
number partitioning. These problems were chosen be-
cause they have been studied extensively, but neither had
traditionally been approached using local optimization,
the algorithmic template upon which simulated annealing
is based.

The graph coloring problem has widespread applica-
tions in areas such as scheduling and timetabling, e.g..
see Leighton (1979), Opsut and Roberts (1981), and de
Werra (1985). We arc given a graph G = (V, E), and
asked to find the minimum & such that the vertices of G
can be partitioned into k color classes V', ..., V,, none
of which contains both endpoints of any edge in E.
Here, the apparent neglect of local optimization in the
past may not have been totally justified. By changing the
definition of the cost of a solution, and possibly by
extending the notion of what a solution is, one can come
up with a variety of plausible proposals for local opti-
mization that might yield good colorings as a side effect
of attempting to minimize the new cost. We investigate
anncaling schemes based on three of these proposals:
1) a penalty-function approach that originated with the
current authors, 2) a variant that uses Kempe chain
interchanges and was devised by Morgenstern and
Shapiro (1986), and 3) a more recent and somewhat
orthogonal approach due to Chams, Hertz and de Werra
(1987). None of these versions can be counted on to
create good colorings quickly, but if one has large
amounts of time available, they appear to be competitive
with (and often to dominate) alternative CPU-intensive
approaches. (Not one of the three annealing approaches
dominates the other two across the board.)

The second problem we study. number partitioning,
was chosen less for its applications than for the severe
challenges it presents to the simulated annealing ap-
proach. In this problem, one is given a sequence of real
numbers a,, a,, ..., a, in the interval [0, 1], and asked
to partition them into two sets A, and A, such that

2. a,- ) q

aeA, aeA,

is minimized. The challenge of this problem is that the
natural "*neighborhood structures’” for it, those in which
neighboring solutions differ as to the location of only one
or two elements, have cxceedingly ‘‘mountainous’” ter-
rain, in which neighboring solutions differ widely in
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quality. Thus, traditional local optimization algorithms
are not competitive with other techniques for this prob-
lem, in particular the “‘differencing’’ algorithm of
Karmarkar and Karp (1982). Consequently, it seems
unlikely that simulated annealing, which in essence is a
method for improving local optimization. can offer
cnough of an improvement to bridge the gap. Our exper-
iments verify this intuition. Moreover. they show that
for this problem even multiple random-start local
optimization outperforms simulated annealing, a
phenomenon we have not observed 1n any of the
other annealing implementations we have studied
(even the mediocre ones).

Although some familiarity with simulated annealing
will be helpful in reading this paper, our intention is that
it be self-contained. In particular. although we shall
frequently allude to Part I for background material, the
reader should be able to understand the results we pre-
sent here without reference to that paper. The remainder
of this paper 1s organized as follows. In Section 1, we
briefly outline the generic annealing algorithm that is the
basis for our implementations, as developed in Part I of
this paper. Sections 2 and 3 are devoted to graph color-
ing and number partitioning, respectively. Section 4
concludes with a brief summary and a preview of the
third and final paper in this series, which will cover our
experiments in applying simulated annealing to the infa-
mous traveling salesman problem.

All running times quoted in this paper are for an
individual processor of a Sequent Balance™ 21000 mul-
ticomputer, running under the DynixTM operating system
(Balance and Dynix are trademarks of Sequent Computer
Systems, Inc.). Comparable times would be obtained on
a VAX™ 750 without a floating point accelerator run-
ning under Unix™ (VAX is a trademark of the Digital
Equipment Corporation; Unix is a trademark of AT&T
Bell Laboratories). These are slow machines by modern
standards; speedups by factors of 10 or greater are
possible with currently available workstations. This
should be kept in mind when evaluating some of the
larger running times reported, and we shall have more to
say about 1t in the Conclusion.

1. THE GENERIC ANNEALING ALGORITHM

Both local optimization and simulated annealing requirc
that the problem to which they are applied be describable
as follows: For each instance 7 of the problem, there is a
set F' of solutions, each solution $ having a cost c(S)
The goal is to find a solution of minimum cost. (Note
that both problems mentioned in the Introduction have
this form.)

In order to adapt either of the two approaches to such

Copyright © 2001 All Rights Reserved



380 / JOHNSON ET AL.

a problem, one must additionally define an auxiliary
neighborhood graph on the space of solutions for a
given instance. This is a directed graph whose vertices
are the solutions, with the neighbors of a solution S
being those solutions S’ for which (S, S’) is an arc in the
neighborhood graph.

A local optimization algorithm uses this structure to
find a solution as follows: Starting with an initial solu-
tion S generated by other means, it repeatedly attempts
to find a better solution by moving to a neighbor with
lower cost, until it reaches a solution none of whose
neighbors have a lower cost. Such a solution is called
locally optimal. Simulated annealing is motivated by the
desire 1o avoid getting trapped in poor local optima, and
hence, occasionally allows ‘‘uphill moves’’ to solutions
of higher cost, doing this under the guidance of a control
parameter called the temperature.

All our annealing implementations start with the
parameterized generic annealing algorithm summarized
in Figure 1. This generic procedure relies on several
problem-specific subroutines. They are READ_
INSTANCE(), INITIAL_SOLUTION(),
NEXT_CHANGE( ). CHANGE _SOLN( ) and
FINAL _SOLN( ). In addition, the procedure is para-
meterized by the variables INITPROB, SIZEFAC-
TOR, CUTOFF, TEMPFACTOR, FREEZE _LIM
and MINPERCENT. (See Part [ for observations about
the best values for these parameters and the interactions
between them.) Note that the generic algorithm never
deals with the solutions themselves, only their costs. The
current solution, its proposed neighbor, the best solution
found so far. and the cost of the latter are kept as static
variables in the problem-specific part of the code. As in
Part I, we allow for the possibility that the ‘‘solution

4. Set freezecount = 0.

5.1 Set changes = trials = 0.

5.1.1  Settrials = trials + 1.

513 LetA=c¢"-—c.

6. Call FINAL_SOLN() to output S*.

1. Call READ_INSTANCE() to read input, compute an upper bound c* on the
optimal solution value, and return the average neighborhood size N.

2. Call INITIAL _SOLUTION() to generate an initial solution S and return ¢ =cost (S).

3. Choose an initial temperature T > O so that in what follows the changes/ trials ratio
starts out approximately equal to INITPROB.

5. While freezecount < FREEZE LIM (i.e., while not yet ‘‘frozen’’) do the following:

While trials < SIZEFACTOR N and changes < CUTOFF-N, do the following:

5.1.2 Call NEXT_CHANGEC() to generate a random neighbor S’ of S
and retumn ¢’ =cost ().

5.1.4 If A £0 (downhill move),
Set changes = changes + 1 and ¢ = ¢
Call CHANGE _SOLN() to set S =S’ and, if §’ is feasible
and cost (§"y<c*, to set §* =§" and c* =cost (S).
5.1.5 If A> 0 (uphill move),
Choose a random number r in [0,1].
Ifr < e (i.e., with probability e /7,
Set changes = changes + 1 and ¢ = ¢’.
Call CHANGE_SOLN().

5.2 SetT = TEMPFACTOR - T (reduce temperature).
If ¢* was changed during 5.1, set freezecount = 0.
If changes/trials < MINPERCENT, sel freezecount = freezecount + 1.

Figure 1. The generic simulated annealing algorithm.
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space’’ may have been cxpanded to include more than
Just the feasible solutions to the original problem, and
thus, our algorithm is careful to output the best feasible
solution found, rather than simply the best solution.

The only substantive difference between the algorithm
summarized in Figure 1 and the generic algorithm of
Part I is the inclusion here of cutoffs to limit the time
spent at high temperatures (where, say, 50% or more of
the moves are accepted). As we observe in Part I for
graph partitioning, and confirm in preliminary experi-
ments for the problems studied here, time spent at high
temperatures does not appear to contribute much to the
quality of the final solution. One way to limit this time is
simply to start at lower temperatures. Solution quality
can degrade, however, if we make the starting tempera-
turc too low. Cutoffs allow us to save time while still
leaving a margin of safety in the starting temperature.
With the addition of cutoffs, our generic algorithm
closely mirrors the annealing structure implicit in
Kirkpatrick’s original code.

In each implementation that we discuss, we shall
describe the relevant subroutines and specify the values
chosen for the parameters. We shall also discuss how
Step 3 is implemented, be it by the ““trial run’’ approach
used for graph partitioning in Part I, or more ad hoc
methods.

2. GRAPH COLORING

The graph coloring problem does not seem at first to be
a prime candidate for heuristics based on local optimiza-
tion, and indeed none of the standard heuristics for it
have been of this type. Recall that in the graph coloring
problem we are given a graph G = (V, E), and asked to
find a partition of ¥ into a minimum number of color
classes C|,C,, ..., C,, where no two vertices u# and v
can be in the same color class if there is an edge between
them, i.e., if £ contains the edge {u, v}. The minimum
possible number of color classes for G is called the
chromatic number of G and denoted by x(G). Graph
coloring has widespread applications, many having to do
with scheduling (in situations where the vertices of G
model the events being scheduled, with conflicts between
events represented by edges) (de Werra 1985, Leighton
1979, Opsut and Roberts 1981).

Because graph coloring is NP-hard, it is unlikely that
efficient optimization algorithms for it exist (i.e., algo-
rithms guaranteed to find optimal colorings quickly)
(Garey and Johnson 1979). The practical question is thus
that of developing heuristic algorithms that find near-
optimal colorings quickly. Even here, there are
complexity-theoretic obstacles. Garey and Johnson
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(1976) show that for any r< 2, it is NP-hard to con-
struct colorings using no more than rx(G) colors. Fortu-
nately, NP-hardness is a worst case mecasure, and does
not rule out the possibility of heuristics that work well in
practice. There have thus been many attempts to devise
such heuristics, e.g., see Welsh and Powell (1967),
Matula, Marble and Isaacson (1972), Johnson (1974},
Grimmet and McDiarmid (1975), Brélaz (1979),
Leighton (1979), and Johri and Matula (1982). Until
recently, the literaturc bhas concentrated almost exclu-
sively on heuristics that use a technique we might call
successive augmentation, as opposed to local optimiza-
tion. In this approach, a partial coloring is extended,
vertex by vertex, until all vertices have been colored, at
which point the coloring is output without any attempt to
improve it by perturbation. In the next section, we
describe several such algorithms because they illustrate
annealing’s competition, and they provide the basic in-
sights that can lead us to simulated annealing implemen-
tations.

2.1. Successive Augmentation Heuristics

Perhaps the simplest example of a successive augmenta-
tion heuristic is the ‘‘sequential’’ coloring algorithm
(denoted in what follows by SEQ). Assume that the
vertices are labeled vy, ..., v,. We color the vertices in
order. Vertex v, is assigned to color class C,, and
thereafter, vertex v, is assigned to the lowest indexed
color class that contains no vertices adjacent to v, (i.c.,
no vertices u such that {u,v,}eFE). This algorithm
performs rather poorly in the worst case; 3-colorable
graphs may end up with Q(#n) colors (Johnson). For
random graphs with edge probability p = 0.5, however.
it is expected (asymptotically as n= | V| gets large) to
use no more than 2 - x(G), i.e., twice the optimal num-
ber of colors (Grimmet and McDiarmid). No polynomial
time heuristic has been proved to have better average
case behavior. (The best worst case bound proved for a
polynomial time heuristic is only a slight improvement
over the worst case bound for SEQ: Berger and Rompel
(1990) improve on constructions of Johnson (1974) and
Wigderson (1983) to construct an algorithm that will
never use more than O(n(loglog n /log n)?) tumes the
optimal number of colors.)

Experimentally, however, SEQ is outperformed on
average by a variety of other successive augmentation
algorithms, among the best of which are the DSATUR
algorithm of Brélaz and the Recursive Largest First
(RLF) algorithm of Leighton. The former dynamically
chooses the vertex to color next, picking one that is
adjacent to the largest number of distinctly colored ver-
tices. The latter colors the vertices one color class at a
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time, in the following “‘greedy’’ fashion. Let C be the
next color class to be constructed, V' be the set of
as-yet-uncolored vertices, and U be an initially empty
set of uncolored vertices that cannot legally be placed
in C.

1. Choose a vertex vge V'’ that has the maximum num-
ber of edges to other vertices in V. Place vy in C
and move all ueV”’ that are adjacent to v, from V’
to U.

2. While ¥’ remains nonempty, do the following:
Choose a vertex ve V'’ that has a maximum num-
ber of edges to vertices in /. Add v to C and
move all uel” that are adjacent to v from V’
to U.

Let G be the residual graph induced by the vertices
left uncolored after C is formed (i.e., the vertices in U
when V7 has finally been emptied). The goal of this
procedure is to make C large while assuring that G, has
as many edges eliminated from it as possible, with the
additional constraint that since v, has to be in some
color class it might as well be in this one.

To get a feel for the relative effectiveness and effi-
ciency of these three algorithms. let us first see how they
do on what has become a standard test case for graph
coloring heuristics, the 1,000-vertex random graph. In
the notation of Part I, this is G| 4o ¢ 5. the 1,000-vertex
graph obtained by letting a pair {u, v} of vertices be an
edge with probability p = 0.5, independently for each
pair. Although unlikely to have much relevance to prac-
tical applications of graph coloring, such a test bed has
the pedagogical advantage that results for it seem to be
stable (behavior on one graph of this type is a good
predictor for behavior on any other) and that different
heuristics yield decidedly different results for it. Papers
that have used this graph as a prime example include
Johri and Matula (1982), Bollobas and Thomason (1985),
Morgenstern and Shapiro (1986), Chams, Hertz and de
Werra (1987). (We shall subsequently consider a selec-
tion of other types of graphs, but the well-studied
G| o00.0 5 graph provides a convenient setting in which to
introduce our ideas.)

Figure 2 presents a histogrammatic comparison of the
three algorithms on a typical G| g9 o5 Tandom graph.
Although none of the three algorithms is, as defined, a
randomized algorithm. each depends, for tie-breaking if
nothing else, on the initial permutation of the vertices.
By varying that permutation, one can get different re-
sults, and the figure plots histograms obtained for the
results of each for 100 different initial permutations.
Note that each algorithm produces colorings within a
tight range, that the ranges do not overlap, and that RLF
is significantly better than the other two, albeit at a
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Figure 2. Histogram of the colorings found by running
each of RLF, DSATUR and SEQ for 100
different starting permutations of the vertices
of a typical G, gy o5 random graph. (The
average times per run on a Sequent processor
are given in parentheses.)

substantial cost in running time. Its average of 107.9
colors is also better than the results reported in Johri and
Matula for other successive augmentation algorithms,
such as DSATUR With Interchange (111.4) and Smallest
Last With Interchange (115.0).

None of these algorithms, however, uses close to the
optimal number of colors for G| 4y o5, Which is esti-
mated to be about 85 by Johri and Matula. (This is only
a heuristic estimate. All that can currently be said with
rigor is that x(G gy0 o 5) = 80 with very high probabil-
ity, as shown by Bollobas and Thomason.) It appears
likely that, if we want to approach 85 colors, we will
need much larger running times than used by the typical
successive augmentation algorithms. Morcover, given
the narrow variance in results of such algorithms, as
typified by the histograms in Figure 2, the approach of
performing multiple runs of any one seems unlikely to
yield significantly better colorings even if a large amount
of time is available. Thus, the way is open for computa-
tion-intensive approaches such as simulated annealing.

2.2. Three Simulated Annealing Implementations

Despite the lack of traditional neighborhood search algo-
rithms for graph coloring, the problem has proved a
surprisingly fertile area for simulated annealing imple-
mentations. We will describe and compare three serious
candidates.

2.2.1. The Penalty Function Approach

We begin with the historically first of the three, the one
with which we began our studies in 1983. This approach
was motivated in part by the success of RLF.
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Problem-Specific Details. Consider the following
neighborhood structure, one that. as in the graph parti-
tioning implementation of Part I, involves infeasible
solutions and penalty functions. A sofution will be any
partitton of V into nonempty disjoint sets
C..Ch,...,C, 1 <k < | V], whether the C, are legal
color classes or not Two solutions will be neighbors if
onc can be transformed to the other by moving a vertex
from one color class to another. To generate a random
neighbor, we will randomly pick a (nonempty) color
class Cp; p, a vertex veCy, ., and then an integer /,
1<i<k+1, where k is the current number of color
classes. The neighbor is obtained by moving v to color
class C,. If i=k + 1 this means that v is moved to a
new, previously empty class. If v is already in class C,
we try again. Note that this procedure biases our choice
of v toward vertices in smaller color classes, but this is
presumably desirable because it 1s our goal to empty
such classes.

The key to making annealing work using this neigh-
borhood structure is the cost function we choose, and
here is where we adapt the general philosophy of RLF,
which constructs its colorings with the aid of a subrou-
tine for generating large independent sets. Our cost
function has two components, the first favors large color
classes, the second favors independent sets. Let II=
(C,,...,Cy) be asolution, and £, | <i<k be the set
of edges from E both of whose endpoints are in C,, i.e.,
the set of bad edges in C,. We then have

k k
cost(11) = — Z] |C | %+ Zl 2|C| | El.
1= 1=
An important observation about this cost function is
that all its local minima correspond to legal colorings.
To see this, suppose that £, is nonempty, and let v be an
endpoint of one of the bad edges contained in E,. Note
that moving v from C, to the previously empty class
Cy . reduces the cost function because we reduce the
second component of the cost by at least 2 | C,| while
increasing the first by at most

|C1‘2A((‘Cll_1)2+12):2|C1| -2.

Observe that this cost function does not explicitly count
the number of k of color classes in II; we hope to
minimize this as a side-effect of minimizing the cost
function. The use of such indirect techniques has ac-
counted for more than one practical success claimed for
annealing, from the graph partitioning problem men-
tioned before to problems of circuit layout and
compaction (e.g., see Kirkpatrick, Gelatt and Vecchi
1983, Vecchi and Kirkpatrick 1983, Collins, Eglese and
Golden 1988). Note also that for a given number of color
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classes the cost function is biased toward colorings that
are unbalanced, rather than ones where all classes are
approximately the same size. Consequently, an optimal
solution with respect to this cost function need not use
the minimum possible number of colors, although in
practice, this does not seem to be a major drawback.
Moreover, the bias may be profitable in certain applica-
tions. For instance, colorings for which = |C,|? is
maximized are precisely what is needed in a scheme for
generating error-correcting codes due to Brouwer et al.
(1990), and our annealing software has been uscful in
this application, as reported in that paper. (Aarts and
Korst (1989) describe an alternative cost function with
respect to which solutions of minimum cost do have the
minimum possible number of colors, but their function
has other drawbacks.)

To complete the specification of the problem-specific
details in our penalty function implementation, we must
say how we generate initial solutions. One possibility
would be to start with all the vertices in a single class
C|; the other extreme would be to start each vertex in its
own unique one-element class. On the basis of limited
experiments. an intermediate approach seems reason-
able, in which one assigns the vertices randomly to
CHROM _EST classes, where CHROM _EST is a
rough estimate of the chromatic number. The neighbor-
hood size returned is then CHROM_EST:-|V |, a
good estimate of the number of neighbors a solution will
have toward the end of the annealing schedule. We did
not follow this approach precisely, however. For our
G om.05 graph, we set CHROM _EST = 90, a reason-
able estimate, but then for simplicity we left it at this
value in our experiments with other graphs. even though
in some cases 90 was a substantial over or underesti-
mate. Given that we were varying SIZEFACTOR any-
way, errors in neighborhood size werc not deemed to be
significant, and fixing CHROM _EST left us with one
less parameter to worry about.

Nevertheless, the effective neighborhood size (the
number of neighbors that a near-optimal solution can
have) can be substantially bigger than that for graph
partitioning in Part I (where it was simply the number of
vertices). Here, the higher the chromatic number, the
bigger the effective neighborhood size gets. Assuming,
as our experiments with graph partitioning suggest, that
the number of trials we should perform at each tempera-
ture must be a sizeable multiple of this neighborhood
size, we can see that we are in for much larger running
times than we encountered with graph partitioning: for
G| 000.0 5 the running times might blow up by a factor of
90 or more!

As with graph partitioning. however, the time for
proposing and accepting moves is manageable. If we
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store the graph in adjacency matrix form and the color
classes as doubly-linked lists, the time to propose a move
is proportional to the sizes of the two color classes
involved, and the time to accept a proposed move is
constant. (Our data structures are optimized for dense
graphs with relatively small color classes, as these are
common in applications and are the main ones we study
in this paper. For sparser graphs with larger color
classes, it may be more appropriate to represent the
graph in adjacency list form and maintain an array that
specifies the color of each vertex. The average time for
proposing a move would then be proportional to the
average vertex degree.)

Penalty Function Local Optimization. Before we turn
to the implementation details in the generic part of the
algorithm, let us briefly examine how well this neighbor-
hood scheme performs in the context of pure local
optimization. In our implementation of local optimiza-
tion based on this scheme, we limit ourselves to a
maximum of 200 color classes, thus giving us at most
200 | V' | possible moves from any given partition. We
start with a random assignment of the vertices to 200
color classes, and a random permutation of the 200 | V' |
possible moves. We then examine each move in turn,
performing the move only if it results in a net decrease
in cost. Once all 200 | V' | moves have been considered,
we re-permuie them and try again, repeating this proce-
dure until for some permutation of the moves, none is
accepted. Then we know we have reached a locally
optimal solution and stop.

For our standard G, gy o5 random graph, we per-
formed 100 runs of this local optimization algorithm.
The results, although better than what was obtainable in
practice by pure sequential coloring, were unimpressive:
the average time per run was 37.3 minutes (slower than
RLF), but the median solution used 117 colors (worse
than both RLF and the much faster DSATUR algorithm).
No solutions were found using fewer than 115 colors.
Fortunately, this neighborhood structure is better for
simulated annealing than for local optimization,

Generic Details of Penalty Function Annealing. Al-
though all our annealing implementations follow the
generic outline of Figure 1, certain parameters and rou-
tines therein must be specified before the description of
any given implementation is complete. For penalty func-
tion annealing, we obtained our starting temperature by
trial and error, discovering that a single initial tempera-
ture usually sufficed for a given class of graphs. In the
case of G, ¢ 5 graphs, an initia] temperature of 10 tended
to yield an initial acceptance ratio between 0.3 and 0.4,
which seemed adequate based on the experiments of

Part 1. (Limited experiments with higher starting tem-
peratures yielded longer running times but no better
solutions.) To further reduce running time, we used
cutoff with CUTOFF = 0.10.

For our termination condition, we set MINPER-
CENT = 2%, allowing for the likelihood that a certain
small number of zero-cost moves will always be possible
and hence accepted, and set FREEZE_LIM =5,
Finally, rather than perform explicit exponentiation each
time we need the value e /7, we use the table-lookup
method described in Part I for quickly obtaining a close
approximation. (This method is also used in our other
two annealing implementations.) Running times were
then varied by changing the values of TEMPFACTOR
and SIZEFACTOR.

The Dynamics of Penalty Function Annealing. Fig-
ure 3 presents ‘‘time exposures’ of an annealing run
under this scheme on our G|y 05 graph with
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tor of 0.95 every 20 data points.)




CHROM _EST = 100 (slightly higher than our stand-
ard value, although this has no significant effect on the
picture), TEMPTFACTOR =0.95 and SIZEFAC-
TOR =2 So that more of the total annealing process
can be seen, we used an initial temperature of 96, rather
than the value of 10 used in the later experiments. The
temperature 10 was reached when the Number of
Trials) /10,000 reached 918. Also, for the sake of a full
picture, cutoffs were turned off and the run was stopped
manually once it was clear that convergence had set in.

The top display shows the evolution of the number of
sets in the current partition. Note that by trial 10,000
(the first data point), the number of sets has already
Jjumped from the initial 100 to something close to 140,
and from then on it increases more or less smoothly to a
peak of 233 before declining to a final value of 102.
Interestingly, this behavior does not correlate with the
movement of the “*current cost™ presented in the middle
display, which is consistently declining. The reason for
this lack of correlation lies in our method for choosing a
“‘random neighbor.’” Recall that we pick a random,
nonempty color class and then a random member of that
class to move. This introduces a bias toward the mem-
bers of small classes. Since a move always reduces the
size of the chosen class by one, this means that at high
temperatures, small classes will tend to empty faster than
they are filled. Indecd, had we started our run at a
temperaturc at which 99% of the moves were accepted
(here we start at roughly 75%), the number of colors
would have been fluctuating between 30 and 40 or so.
As the temperature drops, the part of the cost function
that penalizes *“bad edges”” begins to take effect, driving
up the number of colors until there arc few enough bad
edges for the component of the cost function that re-
wards big color classes to begin driving the number of
colors back down.

The appearance of the first legal coloring is marked
by a vertical line through the display. Although the
current cost (middle display) declines more-or-less
monotonically, there is a definite bump in the curve
occurring slightly to the left of that line, a bump that we
did not see in the time exposures of Part I for graph
partitioning. Bumps of this sort regularly occur in runs
of penalty function annealing. Unlike the other changes
in slope for the curve, they do not reflect a similar
change 1n acceptance rate. (The latter is depicted in the
bottom display.) Anncalers with physics backgrounds
might suggest that such bumps indicate ‘‘phase transi-
tion’" (Kirkpatrick. Gelatt and Vecchi). Unfortunately,
there is no good explanation of why they arise or whether
they can be exploited.

The total running time for the time cxposure was
about 11 hours. This would have been reduced signifi-
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cantly had we used cutoffs and the lower standard initial
temperature of 10, but it is already less than the 17.9
hours it took to perform 100 runs of RLF. (Recall that
RLF never used fewer than 105 colors. 3 more than we
needed here). By further increasing the running time (via
increased values for TEMPFACTOR and SIZEFAC-
TOR). still better colorings are obtainable by this
approach. As wce shall see in Section 2.4, it is possible
with this approach to get colorings using as few as 91
colors, if one is willing to spend 182 hours.

2.2.2. The Kempe Chain Approach

Preliminary reports of the penalty function implementa-
tion and the results for it inspired Morgenstern and
Shapiro to proposed the following alternative, which
retains the cost function but makes a major change in the
neighborhood structure.

Problem-Specific Details. So/utions are now restricted
to be partitions C|, ... .C, that are legal colorings, i.e.,
are such that no edge has both endpoints in the same
class. (Note that this means that all the sets E, of bad
edges are empty, and so the cost function simplifies to
just — }jle | C,|2.) In order to ensure that moves pre-
serve the legality of the coloring, Morgenstern and
Shapiro go to a much more complex sort of move, one
involving Kempe chains.

Suppose that C and D are disjoint independent sets in
a graph G. A Kempe chain for C and D is any
connected component in the subgraph of G induced by
CUD. Let XAY denote the symmetric difference
(X—-Y)U(Y - X) between two sets X and Y. The
key obscrvation is that if A is a Kempe chain for
disjoint independent sets C and D, then CA H and
DAH arc themselves disjoint independent sets whose
union is CU D. This suggests the following move gen-
eration procedure: Randomly choose a nonempty color
class C and a vertex veC, as in the penalty function
approach. Then randomly choose a nonempty color class
D other than C, and let H be the Kempe chain for C
and D that contains v. Repeat the above procedurc until
one obtains C, v, D and H suchthat H=CUD (i.e..
such that H is not “‘full’’), n which case the necxt
partition is obtained by replacing C by CA H and D by
DAH in the current one. (Using a full Kempe chain in
this operation simply changes the names of the two
colors, a meaningless change, which is why we ignore
such moves.)

This procedure appears to be substantially more ex-
pensive than the move gencration procedurc in the penalty
function approach, and it is. It also makes substantially
bigger changes in the solutions. however, and so may be
worth the extra effort. Moreover, it is not exorbitantly
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expensive, at least for dense graphs. For such graphs the
color classes tend to be small, and so the following
technique can find the Kempe chain # relatively quickly.
Whenever a new vertcx « is added to H (including the
first vertex v), we scan the members of the other color
class that arc not yet in H and add to H each one that is
adjacent to u. Furthermore, we use two auxiliary tables
to help us whenever possible avoid the wasted time of
constructing full Kempe chains that must be abandoned.
One stores for cach pair C, D the time at which they
were last discovered to have a full Kempe chain; the
other stores for each C the time at which it was last
modified. When C and D are first chosen, we check to
see whether we have seen a full Kempe chain for them
since the last time they were modified, and if so, aban-
don their further consideration immediately.

To complete the specification of the problem-specific
details of the Kempe chain approach, we must say how
instance ‘‘size’’ is detcrmined and how initial solutions
are generated. We perform random scquential colorings
for both purposes. When an instance is read, we perform
a random sequential coloring, and return the size K | V' |,
where K is the number of colors used in the coloring. A
second random sequential coloring is performed each
time a new initial solution is requested.

Kempe Chain Local Optimization. As with the penalty
function approach, the Kempe chain approach can serve
as the basis for a local optimization algorithm. Here,
because we are restricted to legal colorings. we limit the
total allowable number of colors to 150, yielding
150 | V| possible moves. Initial solutions are generated
by random sequential colorings as just specified. Other-
wise, the details are the same as for penalty function
local optimization, as outlined previously. The results
were also similar (and similarly mediocre). The average
running time over 100 runs was 33.3 minutes (slightly
better than for the penalty function approach but still
much slower than RLF), and the median number of
colors was again 117.

The Dynamics of Kempe Chain Annealing. Before
describing the generic parameters governing the start and
finish of a run, let us compare the operation of Kempe
chain annealing to the penalty function approach. Figure
4 presents ‘‘time exposures’’ for Kempe chain anneal-
ing, analogous to those in Figure 3 for the penalty
function approach. All parameters except SIZEFACTOR
were given the same values as in the penalty function
run; because of the greater expense of the moves here,
we reduced SIZEFACTOR from 200 to 20 (and the run
still took 18 hours, as opposed to the 11 for the penalty
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Figure 4. Three views of the evolution of an annealing
run for a G, g o5 graph under the Kempe
chain annealing scheme. (The temperature
was reduced by a factor of 0.95 every 20 data
points.)

function approach). For comparison purposes, we also
set the neighborhood size to the same 100,000 value
used in the previous run, and used the same starting
temperature 7 = 96. A first observation is that the curves
are significantly more irregular than those for penalty
function annealing. For the most part, this may be
attributable to the reduced value of SIZEFACTOR, since
this means that each data point represents 1,000 rather
than 10,000 trials, and so successive data points may be
correlated more closely. There may, however, be a
different reason for the extreme excursion in the accept-
ance rate curve. Such excursions occur in the tails of
other Kempe chain runs, but at random places (unlike
the regularly occurring smooth bump in the middle of
the “‘current cost’” curve for penalty function annealing
in Figure 3). Here the excursion seems attributable to the
topography of the Kempe chain solution space, as we
shall hypothesize in morc detail below.

A second difference between the runs in Figures 3 and
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4 results from the fact that temperature correlates differ-
ently with acceptance percentage under the two regimes.
Whereas the initial temperature 7 =96 yields a 75%
acceptance rate under the earlier approach, here it yields
a 99% rate. Thus, much of the time in Figure 4 is wasted
at too high a temperature. If we instead choose a starting
temperature 7' =4, which yields approximately the same
acceptance ratio of 70% as did 7' = 96 for the penalty
function approach, we converge to roughly the same
number of colors as we do here, but in only six hours.
Note also that the curves for ‘‘number of colors’” and
“‘current cost’’ are similar, whereas in the penalty func-
tion approach the corresponding curves differ substan-
tially. There the number of colors initially increase while
the cost declines, here they both jump quickly to high
values and then undergo correlated declines. (Our Kempe
chain implementation, like the one for the penalty func-
tion approach, is biased toward choosing vertices in
small color classes for recoloring. Here, however, a
move is roughly as likely to increase the size of the
chosen class as to decrease it. Thus, classes do not tend
to empty at high temperatures, and the equilibrium num-
ber is high rather than low.)

A third observation about the Kempe chain run of
Figure 4 is that the solution cost converges while the
percentage of accepted moves is still rather high. The
penalty function run of Figure 3 is typical of most
annealing implementations we have seen in that the best
solution value is not seen until the acceptance rate is
quite low. In the run of Figure 3, the first legal 102-
coloring does not appear until the acceptance rate drops
to about 0.5%. For the Kempe chain run, however, the
acceptance rate still hovers around 7% when ifs best
number of colors is first encountered. This is largely
attributable to the topography of the solution space, in
particular the structure of the neighborhoods of “*good*”
colorings. Such a coloring is likely to have far more
Kempe changes that improve its ‘‘cost’” (or at least leave
it the same) than it will have vertices that can individu-
ally change color without negative effect (the analogous
moves under the penalty function approach).

Moreover, 1n explanation of the abovementioned ex-
cursion in the acceptance rate, some good colorings are
likely to have far more ‘‘good’” neighbors than others.
This inhomogeneity of the solution space means that the
acceptance rate at convergence can vary wildly from run
to run, going as high as 15% one time and as low as 5%
the next. This makes it difficult to fine-tune the conver-
gence parameters of our implementation. To be conser-
vative in the experiments to be reported, we set
MINPERCENT = 15% and allow freezecount to go
up to 10 before terminating. (We again set our initial
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temperatures by manual trial and error, observing as
with penalty function annealing that the same initial
temperature scems to work well across entire classes of
graphs. For random graphs with p = 0.5, we use an
initial temperature of 7 = 3. which generally yields an
initial acceptance rate between 50% and 80%. As with
penalty function annealing. we use CUTOFF = 0.10 in
our main experiments.)

A final observation about the run in Figurc 4 (and
presumably the most important) is that the numher of
colors to which the run converges is 94, as oppt - to
101 for the penalty function approach. The running time
is somewhat longer, 17.9 hours versus 11, but in 17.9
hours the fewest number of colors we have been able to
obtain with the penalty function approach, cven using
cutoffs, is only 98. In the 182 hours it takes penalty
function annealing to find a 91-coloring, Kempe chain
annealing can find one using only 89 colors, and, as we
shall see in Section 2.4, it can do even better with just a
bit more time. Thus, it appears that the extra complexity
of the neighborhood structure for Kempe chain annealing
can more than pay for itself, and we shall confirm this in
the more extensive experiments that follow.

2.2.3. The Fixed-K Approach

Our final annealing implementation is derived from a
paper by Chams, Hertz and de Werra, and solves a
slightly different problem. Instead of attempting to mini-
mize the number of colors used in a legal coloring, this
approach attempts to minimize the number of monochro-
matic edges in a not-necessarily-legal coloring with a
fixed number of color classes.

Problem-Specific Details. Given a graph G = (V, E)
and a numbcr of colors K, the solutions are all partitions
of V into K sets (empty sets are allowed), and the cost
of a solution is simply the total number of edges that do
not have endpoints in different classes (the “*bad edges’’).
A partition IT, is a neighbor of a partition I1, if the two
partitions differ only as to the location of a single vertex
v, and v is an endpoint of a bad edge in II,.

Note that here the neighbor relation is not symmetric;
in particular, a legal coloring has no neighbors because it
has no bad edges. This is of course no problem. for if
ever the anncaling process finds a legal coloring, there is
no point in proceeding any further. Lunited experimenta-
tion indicates that this neighborhood structure is much
more effective than the less-restrictive one in which
v need not be an endpoint of a bad cdge. (The less-
restrictive neighborhood was essential in our penalty
function adaptation, since the goal was to reduce the
pumber of color classes, which might entail emptying
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out a class even though it contained no bad edges.) To
choose a random neighbor, we first choose a random
“‘bad vertex” v (v is bad if it is the endpoint of a bad
edge). and then choose a random new color class for v
from among the K — 1 that do not contain v.

The remaining problem-specific details are as follows:
The size parameter is set to K | V|, reflecting a worst
case situation in which all vertices are bad. The initial
solution is a random partition into K sets.

Fixed-K Loca! Optimization. A local optimization al-
gorithm based on the fixed-K neighborhood structure
and cost function can be implemented in much the same
way as we implemented local optimization versions of
the two previous approaches. Therc are just K|V |
possible moves, which we cycle through as before. Each
run starts with a random partition into K color classes.

The evaluation of an algorithm of this type is, how-
ever, a different matter. For this local optimization
approach to be useful, it must reach a solution of cost 0
(i.e., a legal coloring). Thus, the relevant question to ask
is what is the minimum XK for which such a success
occurs regularly. Unfortunately, the answer is quite dis-
couraging. Weo performed 100 runs each for various
values of K (this was not too burdensome, as the
running times were much smaller than those for the two
previous approaches, less than 90 seconds per run). The
first value of K for which any of the 100 trials pro-
duced a successtul coloring was K = 141, well above the
number of colors 1n the worst coloring we ever found
using sequential coloring. The success rate did not reach
50% until K = 150. Thus, simulated annealing has far
more to redeem for this approach than for the previous
two.

Generic Details and the Dynamics of Fixed-K
Annealing. In performing fixed-K annealing, we again
set the initial temperature manually (7 =2.0 yields a
50-60% initial acceptance rate for the random graphs
we tested), and cutoffs are used with CUTOFF = 0.10.
For termination we use MINPERCENT =30% (large
numbers of O-cost moves are likely to exist), and quit
when either a solution with no bad edges is achieved
or the freezecoun! reaches 10. Running time is
adjusted, as before, by varying SIZEFACTOR and
TEMPFACTOR.

Time exposures for this approach, analogous to those
in Figures 3 and 4, will be omitted, as they do not
display any of the anomalies we obscrved for penalty
function and Kempe chain annealing. That is, they look
remarkably like the standard curves seen in Kirkpatrick,
Gelatt and Veechi and in Part I of this paper, except that,
in those cases where a 0-cost solution (i.e., legal color-

ing) is found, the “‘converged’ tail of the curve is
truncated, as explained before. The one fact of note is
that, with SIZEFACTOR =4, TEMPFACTOR = 0.95
and cutoffs turned off, runs with K fixed at 96, 97 and
98 all succeeded (in roughly 11.8 hours), whereas a run
with K = 95 took 13.9 hours and failed to find a legal
coloring. Thus, this approach too seems to dominate
penalty function annealing, which took 11.1 hours to
find a 101-coloring. This domination is not complete,
however, as we shall see in Section 2.4 when we com-
pare the two approaches with cutoffs enabled and with
their standard fixed starting temperatures in place.

Moreover, the domination assumes that one knows in
advance which values of K go with a given (SIZEFAC-
TOR, TEMPFACTOR) pair. The extra experimenta-
tion to match up these parameters provides fixed-K
annealing with an additional overhead not present for the
previous two approaches. We shall have more to say
about this overhead after we present our more detailed
experimental results.

2.3. Exhaustive Search Alternatives

As indicated, the domain of applicability for our simu-
lated annealing implementations consists of those situa-
tions where the computing time available is far larger
than that required by traditional successive augmentation
heuristics like RLF, DSATUR and SEQ. Annealing is
not the only way to apply large amounts of time to the
problem, however, and in this section we describe
two major competitors in the arena of multihour
computation.

The first is exhaustive search. On seeing reports of
100 + hour running times, the reader might be excused
for asking why, with all that time available, one does
not simply use exhaustive search and find an optimal
coloring? As we shall see, however, even when using
branch-and-bound techniques to prune the search space
dynamically, this approach becomes infeasible well be-
fore 100 vertices. In particular, we implement the
branch-and-bound algorithm outlined in Figure 5, which
includes most of the obvious shortcuts (e.g., see Brélaz)
and seems competitive with the best previous implemen-
tations. Figure 6 reports the results of running this
algorithm on random G, , 5 graphs. Three samples each
were generated for s =40,45,...,85,90. As can be
seen, the growth rate in running time is clearly exponen-
tial, and only two of the three 85-vertex samples (and
none of the 90-vertex samples) finished within 1,000
hours.

Our second alternative is more competitive: a parame-
terized generalization of RLF that can make productive
use of long running times when the time is available.
This algorithm, which we shall denote by XRLF, is
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Program CHROM_NUM(G) (Given a graph G = (V,E), outpuis x(G))

1. Output COLOR(V., | V[0).

Function COLOR(U,C,B,K)

U is the set of as yet uncolored vertices.

C is a set of pairs (u,i),whercu e V- Uandi, 1 i< |VL is a color.
B is the number of colors in the best legal coloring secn so far.

K < B is the number of colors used in C.

(This function returns the minimum of B and the fewest number of colors in
an extension of C to a full legal coloring.)

1. If |U] = 1,let u be the single member of U, and do the following:

1.1. If there is any color j, 1 £ j < K, such that no vertex adjacent to u
has color j, return K.

12. K+ 1< B,retumkK + 1.

1.3. Retum B.

2. Otherwise, choose a u € U that is adjacent to already colored vertices with the
maximum number of different colors, breaking tics in favor of vertices that

arc adjacent to the most as yet uncolored vertices.

. Foreachcolor j, 1 < j < K, to which u is not adjacent, do the following:

.IfK < B - 1,setB=COLORW ~ {u},Cuw {(u,K + 1)},BK + 1).

3. If uis adjacent to B — 1 colors, return B.
4
4.1. Set B=COLOR(U - {u},C © {(u,j)}.B,K).
5
6. Return B.

Figure 5. Branch-and-bound algorithm for finding X(G). (In the implementation. U and C are maintained in a global
data structure to which pointers are passed. Data structures are also maintained for vertex degrees and color

adjacencies.)

based on ideas first suggested by Johri and Matula,
augmented here by a final ‘‘exact coloring’’ phase that is
invoked when the set of vertices remaining to be colored
is sufficiently small. The details of XRLF are sketched
in Figure 7. To understand what is going on, note that in
RLF one can view the process of constructing the next
color class as a heuristic attempt to find a near-optimal
solution to the following NP-hard subproblem. Find an
independent set C contained in the current set ¥’ of
uncolored vertices such that |{{u,v}eE: ueC and
veV’'— C}| is maximized, and hence the number of
edges in the residual graph is minimized. (Experiments
indicate that this is a slightly better goal than simply
finding an independent set C of maximum size, a goal
that it tends to approximate anyway.) If one lets RLF*
denote the algorithm in which the residual edge mini-
mization subproblem 1s solved optimally at each step,
one can view XRLF (with the parameter EXACTLIM
set to 0) as providing a full range of approximations to
RLF* Depending on the values of the parameters
SETLIM, TRIALNUM and CANDNUM, these range

1000 =

100 Branch and Bound

10

Z— M=

wICOT

or +

001 L

0001 L. L 1 L bee e
30 50 60 70 8N S0

NUMBER OF VERTICES

Figare 6. Running times for brand-and-bound on G, 5
random graphs.

from oncs that are even weaker than RLF all the way up
to RLF* itself.

Algorithm XRLF constructs a new color class C by
repeating the following experiment for TRIALNUM
iterations and then taking the best result: Initially all
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uncolored vertices are candidates and set C 1s empty. If
the number of remaining candidates 1s less than
SETLIM, use exhaustive search to find the best exten-
sion to C. If there are more than SETLIM candidates
and C is empty, choose a random candidate. add it to C,
and declare all its neighbors to be noncandidates. If C is
not empty, randomly sample CANDNUM candidates,
let v be one that is adjacent to the most uncolored
noncandidates, add v to C, and declare all neighbors of
v to be noncandidates. (When TRIALNUM =1, the
first vertex chosen is actually one of maximum degree,
as in RLF, although when more trials are performed,
random choices seem to do better. The algorithm of
Figure 7 also contains an optimization to handle the case
when TRIALNUM is so large that exhaustive search
would be faster than repeated trials.) Within this basic
algorithmic structure, RLF is obtained, at least approxi-
mately, by setting (EXACTLIM, SETLIM, TRIAL-
NUM,CANDNUM) = (0,0, 1, N), where N is suffi-
ciently large that all vertices are likely to be considered
as candidates in Step 4.3.2. RLF¥ is obtained by setting
EXACTLIM =0 and SETLIM = N. (For random
G, 5 graphs, this is feasible for N as large as 250, if
one uses a tightly coded implementation of Step 4.3.1
that avoids considering any subset more than once.)

We point out, however, that even though the limiting
algorithm RLF* solves an NP-hard problem as a subrou-
tine, it is not guaranteed to find optimal colorings.
Constructions in Johnson can be modified to show that,
as with the simpler heuristics mentioned earlier, RLF*
can in the worst case use numbers of colors that are
arbitrary multiples of the optimal number. Nevertheless,
as we shall see, even approximations to RLF* can do
well in practice, and our use of exhaustive search to
finish up the coloring can make up for some of RLF*’s
drawbacks. In particular, for the G, g4 o5 random
graph we have been considering, XRLF with
(EXACTLIM, SETLIM, TRIALNUM , CANDNUM)
(70. 63, 640, 50) finds 86-colorings in roughly 68
hours, substantially outperforming all our annealing
implementations.

In the next section, we examine more carefully the
tradeoffs between running time and the quality of solu-
tion for the graph coloring heuristics we have discussed,
and how they depend on the type and size of graph in
question. We report on experiments both with random
G, o5 graphs and with graphs of distinctly different
character. As we shall see, the dominance of XRLF for
the G, 9900 5 graph is not necessarily typical.

2.4. Experiments in Graph Coloring

In this section, we report more extensively on our exper-
imental comparison of the three annealing implementa-

tions for graph coloring and theirr competitors. Our
experiments cover a variety of types and sizes of graphs.
and we discover that the approach of choice can depend
strongly on the type of instance in question, and how
much computing time is available. The first set of exper-
iments covers the G gy o5 graph that bas been our
standard example so far. As hinted, these experiments
paint a rather bleak picture of annealing (although, as we
shall see subsequently, not necessarily a typical one).

2.4.1. Random p = 0.5, 1,000-Vertex Graphs

For the Gy 5 graph that has been our standard
example, Figure 8 illustrates the tradeoff between run-
ning time and the number of colors for the four main
approaches we have been considering (penalty function
annealing, Kempe chain annealing, fixed-K annealing,
and algorithm XRLF). Note that for all approaches,
reducing the number of colors used requires substantial
increases in running time (effected by altering the appro-
priate algorithmic parameters). From this picture, we
can see that XRLF clearly dominates all three ap-
proaches based on annealing, and Kempe chain anneal-
ing clearly dominates penalty function annealing. The
comparison between penalty function and fixed-K an-
nealing is less clearcut, with an apparent crossover oc-
curring at 92 colors. (Conclusions based on running time
differences of less than a factor of two are somewhat
suspect, however, given that our annealing implementa-
tions were not thoroughly optimized.)

A more detailed presentation of the data is presented
in Table I, which gives for each of the approaches the
computing time needed to find legal colorings with spec-
ified numbers of colors. (For comparison, we also in-
clude the median and best number of colors for 100 runs
of RLF. together with the time required for 1 and 100
runs, respectively, and the percent of times the best
value occurred in the 100 runs. Since only 100 runs were
performed, the value quoted for *‘best’’ may not be very
robust unless the percentage of occurrence is high
enough. It is clear. however, that the 17.9 hours needed
for 100 runs of RLF can be more productively put to use
by any of the other four algorithms.) All annealing
parameters except TEMPFACTOR and SIZEFAC-
TOR (TF and SF in Table 1) were fixed as described in
Section 2.2. The values of the latter two parameters are
given in parentheses, with TEMPFACTOR represented
by a shorthand that emphasizes the fact that halving the
cooling rate should approximately double the running
time, as should doubling SIZEFACTOR (an effect
studied in more detail in Part I). To be specific, if the
code is i, TEMPFACTOR is approximately 0.95"/7,
representing an /-fold decrease in the cooling rate over
the base of TEMPFACTOR =0.95. (The precise
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I. SetR=V,K=0

3. Output K + CHROM_NUM(Gp).

vertex degreces in A,

and let Co={V .}

Elseset C =X =¢.

| 5. Output C*.

Program XRLF(G) (Given graph G =(V,E), outputs an upper bound on %(G).)

(in what follows, Gy is the subgraph of G induced by R).
2. While | R | > EXACTLIM, do the following.

2.1. SetR=R-IND SET(Gg)and X =K +1.

Function IND_SET(H) (Given graph H = (U, F), returns an independent sct C* c U.)

1. Set best=-1,C*=Co=¢, and let D, and D ,,, be the minimum and maximum

2. IfTRIALNUM =1and | U | >SETLIM, let v ,,, be a vertex of degree D ,,, in H

3. 1f min{TRIALNUM, SETLIM +D .} 2 | U
4. For TRIALNUM iterations, grow a trial independent set C as follows:

4.1 IfCo#d,set C=Co, X={ue U {vya,ujec F}.
Elseif | U | >SETLIM, choose a random vertex v € U and
setC={v},X={ueU:{v,u}e F}.

42 Let W=U-(C wX) (the set of vertices still eligible for C).
4.3. While W is not empty, do the following:
43.1. If | W| <SETLIM, do the following;

Usc exhaustive search to find a set W < W that maximizes
| {fuv}e Fiue W andve U—(Ccuwy | .

SetC=CuUW.
If | {ffuvie FiueCandve U=C} | > best,
set C* =C and

set best = | ffuvie FrlueCandve U—~C} | .

Exit loop beginning with statement 4.3.

4.3.2. Set bestdegree =-1, cand =¢.
For CANDNUM iterations, do the following:

Choose a random vertex u € W.

Lets (u)= | {{uvjie Five X} |

If s (u) > bestdegree, sct bestdegree =s (1) and cand = u.
433, Set C=Cuyf{cand}, X=X U{ve W:{candv}e F},

and W=W—-X —[cand).

JSeLSETLIM = | U | and TRIALNUM = 1.

Figure 7. The Algorithm XRLF with parameters EXACTLIM, SETLIM, TRIALNUM and CANDNUM. (Although
XRLF, as described. outputs only the number of colors used, i1t 15 easily modificd to produce the coloring

found )

values taken for i=0.25,0.5,1,2,4,8 are 0.8145,
0.9025, 0.95, 0.9747, 0.9873 and 0.99358, respectively.)
For XRLF, parameters SETLIM and CANDNUM
were fixed at 63 and 50, respectively, with an entry
XRLF{i, j] indicating that TRIALNUM =i and

EXACTLIM = j. Typically, we chose EXACTLIM to
be cither 0 or the maximum value for which
CHROM_NUM( ) could be expected to terminate in
reasonable amounts of time (in this case, £EXACTLIM =
70), and for both options we adjust running times by
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Figure 8. Tradeoffs between time and colors for a
G go0.0 5 random graph.

letting TRIALNUM increase by factors of 2. (Note that
increasing EXACTLIM from 0 to 70 does not always
bave a significant effect on running time because the
residual graph on which CHROM_NUM( ) is called
need not have the full 70 vertices.)

Since all these approaches involve randomization, they
need not generate the same number of colors on every
run, even when the parameter values are fixed. Since we
were nterested only in general trends, the results sum-
marized in Table I for penalty function annealing, Kempe

chain annealing, and XRLF are for the most part based
on one or two runs for each parameter setting. We report
the average running time, and give for the number of
colors the smallest integer & such that & or fewer colors
were used on more than half the runs. Here the one
exception is marked by an asterisk: for penalty function
annealing, the [2, 64] parameter setting yielded one 91-
coloring and one 92-coloring. Since fixed-K annealing,
unlike the other algorithms, does not produce legal col-
ors when it fails, it is more important to know how likely
it is to succeed for a given choice of parameters. Thus,
we typically performed more runs for it. Table I indi-
cates the fraction of successful runs for each listed
parameter setting; the entry (a, ) specifies that b trials
were performed, of which a resulted in legal colorings.

If the last entry in a column has a parenthesized
running time, this indicates that the given coloring was
never successfully constructed for any parameter choice,
with the reported run being the longest attempted. In
general, the entries in the table arc for the parameter
settings that generated the given colorings in the least
amount of time. (We typically tested nearby values for
TEMPFACTOR and SIZEFACTOR, although we did
not study the parameter space exhaustively.) Note that
with fixed-K annealing and a given fixed K, the results
often passed through three phases as the parameters were
changed to allow increased running time: until a certain

Table I
Running Times Required to Obtain Given Colorings for the
G 0000 s Random Graph of Figure 8¢

Penalty Function Annealing Kempe Chain Annealing

Fixed-K Annealing Successive Augmentation

Colors Hours [TF, SF] Hours [TF, SF} Hours [ TF, SF] (Trials) Hours Algorithm
108 — — — —_ — — — 0.5 RLF[median]
105 — — — — — — - 179 RLF[best: 1%}
102 5.0 1,2} — - — — — —

100 — — 14 [0 25,0 1] 1.8 [1,1] (10/10) — —

99 102 {1,4] — — 2.0 [1,1] (8/10) — -

98 18.0 [1, 8] 2.0 [0.5,0.1] 3.7 [1,2] 7/7 — —

97 — 31 [1,0 1] 4.3 {1.2] (10/16) 02 XRLF|1,0]

96 30.0 [1.16} — — 77 {1,4] (8/10) — —

95 413 2, 16] 7.6 [1,0.25] 90 [1.4] 4/10) — —

94 — — — — 17.3 [1.8] (5/10) — —

93 — — 212 [1,0.5} 31.3 11, 16] 4/ 0.5 XRLF[4,0]

92 709 12,32] 357 1,1 62.1 {2,16] 3/7 06 XRLF[4, 70}
91 182 3* [2,64] — — 122.8 [2,32] (2/6) — -

90 (343.1) [4,64] 64.1 [2,2] (236.6) 14, 32] O/1) 4.7 XRLF[40.0]
89 — — 170.8 4, 4] — — - 8.0 XRLF{20, 70}
88 — — — — — — — 9.6 XRILF{40.70]
87 — — 285.3 [8,4] — e — 18.3 XRLF(160, 70]
86 — — — — - — — 68.3 XRLF[640, 70]

“For algorithms that always yield legal colorings, the listed number of colors was attained more than half the time for the given parameter
settings unless the time for the entry 1s marked by a *. in which case more details can be found 1n the text For penalty function annealing, the
(Tnals) column gives the fraction of runs that resulted 1n legal colorings. A parenthesized running time indicates that the desired coloring was
never found using the given parameter settings See text for elaborations of these points and explanations of other shorthands used
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threshold is reached, no legal colorings are found. Near
the threshold, an occasional legal coloring was found.
Once past it, legal colorings werc found on almost all
runs. (This at teast held truc for the easier colorings.)
The table entries correspond to the fastest parameter
settings for the best success rate attained, where rates of
50% or greater are deemed equally good.

Another observation on our fixed-K results is that
when raw machine speed is taken into account, our
running times appear to be significantly faster than those
reported by Chams, Hertz and de Werra, at least for the
more difficult values of K. Although Chams et al. report
1.8 hours for a 98-coloring compared to our 3.7. the
processor used by Chams et al. is a CDC Cyber 170-855,
which should be four or morc times faster than the
Sequent Balance 21000 processor we used. (One possible
explanation is that the cooling parameters by Chams et
al. seem to have been optimized for high rather than low
values of K.)

Before passing on to other graphs, we remark that for
G| a0 s random graphs, XRLF can be improved 1f one
modifies it to take advantage of the expected properties
of such graphs. Bollobds and Thomason developed an
alternative approximation to RLF* that uses estimates on
tail probabilities to prevent their analogue of Step 4.3.1
from being entered except under the most promising
conditions. With this algorithm, they were able to obtain
colorings that averaged 86.9 colors over ten sample
G o00.0 5 graphs, using less than one hour per run on an
IBM 3081. This corresponds to 8-10 hours on our
processor and hence is half the time it took us to get an
87-coloring for our graph. It is not clear what Bollobds
and Thomason might have achieved if they had allowed
as much running time as we did. For the record, our
best results on G| 4 o5 graphs were obtained with
EXACTLIM =70 and TRIALNUM = 1,260. For these
settings, the average run length was 136 hours. but we
averaged 85.5 colors over a sample of four G| g s
graphs. The graph in Table I was rnot one of those for
which an 85-coloring was found. Perhaps coincidentally,
it also had a slightly higher-than-expected density
(0.5000152), whereas the graphs for which 85-colorings
were found both had densities slightly less than the
expected 0.50.

2.4.2. Random p == 0.5 Graphs With 500 and Fewer
Vertices

The same sort of experiments that we performed on the
G\ 000,05 random graph of the previous section were
also performed on G, , 5 random graphs with # = 125,
250 and 500. As was the case for # = 1,000, we concen-
trated on just onc sample of each graph. Our purpose
was to spot trends rather than estimate the precise
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expected results for any particular choice of »n and p.
For the validity of the trends we observe, we rely on
limited *‘confirmation’ tests on other sample instances,
and on past observations that experimental results for
graphs of this type do not vary substantially from in-
stance to instance.

Results are summarized in Table II, whose entries
obey the same conventions as those for Table 1. (For
XRLF, if the value for trialnum is listed as “‘ex,” this
indicates that XRLF was run in the ‘‘exhaustive mode,”’
ie.. with SETLIM set to the number of vertices and
TRIALNUM = CANDNUM = 1.) For comparison
purposes, we once again include the results for RLF (the
best of the traditional heuristics on these graphs), giving
both the median and best coloring found over 100 runs,
and the times for 1 and 100 runs, respectively. To put
the results in perspective, we also give for each graph
both its computed density and the current best lower
bound on the expected chromatic number for graphs of
its type (e.g., D =0.5020, LB =46 for the case of
n = 500). The lower bound, like that of Bollobds and
Thomason for G| g o5, is determined by computing the
smallest K for which the expected number of K-
colorings exceeds 0.5. Typically, if L is this lower
bound, thc cxpected number of L-colorings is in fact
something like 10°, whereas the expected number of
(L - 1)-colorings is 107 '°. (The expected number of
K-colorings for G, , can be computed using standard
counting arguments; we used a cleverly-optimized
program for doing this provided by Thomason 1987.)

Note that for these smaller graphs, simulated anneal-
ing is a much stronger competitor. For the 125-vertex
graph, both Kempe chain and fixed-K annealing succeed
in finding a 17-coloring, whereas the best that XRLF can
do, even with jts parameters turned as high as they could
feasibly go, is 18 colors. Moreover, 18-colorings could
be found more quickly with the two annealing ap-
proaches than with XRLF. For the 250-vertex, XRLF
was capable of finding the best coloring we saw, but
only on 2 out of 5 runs, and the running times required
by Kempe chain and fixed-K anncaling for the best
colorings are at least in the same ballpark. (It is interest-
ing to note that we could actually perform the limiting
algorithm RLF*, ie., XRLF{ex, 0]. for both the 250-
and 125-vertex graphs, and in each case it required two
colors more than the mimmum found by other mcthods.)

For n = 500, the situation begins to look morc like
that in Table I for » = 1,000, in that for 50 or more
colors, XRLF is substantially faster than any of the other
approaches. Even here, however, despite our best efforts
at increasing its running time, we werc never able to get
it to obtain a 49-coloring, which Kempe chain annealing
found in 161.3 hours (on one out of two tries with the
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Table I
Running Times Used to Obtain Given Colorings for

G

.0 5 Random Graphs, n < 500

Penalty Function Annealing Kempe Chain Anncaling

Fixed-K Annealing Successive Augmentation

Colors Hours [TF.SF] Hours [TF, SF] Hours [TF, SF] (Trnals) Hours Algorithm

125 Vertex, p = 0.5 Random Graph (D = 0.5021, LB = 16)

21 — — — — — — — a0 RLF[median]

20 — — — — — — — 0.2 RLF[best 37%]

19 0.2 [1,1] 00 [0.5,0.5] 0.0 [1.1] (8/10) 0.0 XRLF{ex, 0]

18 1.7 [1, 16] 0.2 [1.2] 01 [1.4] (7/10) 05 XRLF({80, 65]

17 24.1) 12, 128] 21.6 116, 64] 18 {1, 64] (2/8) (6 4) XRLFfex, 75}
250-Vertex, p = 0.5 Random Graph (D = 0.5034. LB =27)

35 — — — — — —_ — 0.0 RLF[median]

33 - — — — — — — 1.2 RLF{best:2 %}

31 1.5 [1,4] 01 [0 5,0.25] 0.2 [1,2] (7/10) 0.1 XRLF[ex, 0]

30 2.5 [1, 8] 08 11,1] 09 [1,8] (6/10) 1.3 XRLF}160,0]

29 14.4 [2.32] 6.2 4.2] 6.4 12,32] (5/10) 2 2% XRLF[160, 65|
500-Vertex, p = 0.5 Random Graph (D = 0.5020, LB = 46)

60 — — — — — — — 01 RLF[median]

59 — - — — — — — 75 RI.F|best.7%)]

55 37 [1.4] — — — — — 0.1 XRLF[1,0]

54 — 15 10.5,0.5} 1.1 1,2] (5/10) 01 XRLF[2,0]

53 8.4 [1.8]} 22 [1,0 5] 2.1 [1,4] (5/10) 02 XRLF[4,0]

52 -2 — 10.6 [1,2] 84 [1.16] (5/10) 0.3 XRLF[8,0]

51 42.2 [2,32] 16.9 [2,2] 28.0 [4.16] (3/14) 4.5 XRLF[160,0]

50 136 8 12, 128] 45.2 [4, 8] 212 4) 4. 128] 0/ 9.8 XRLF[320, 65]

49 — — 161.3* 14, 16] — — —- (73 8) XRLF[2560, 70]

“The notational shorthands of Table I continue to apply here. An ex under XRLF means that the set-finding n the algonthms as performed
in exhaustive search mode (see text), D stands for the actual edge density. and LB for the lower bound on cxpected chromatic number

described in the text

given parameters). Indeed, without the final exact color-
ing phase, we never got XRLF to use fewer than 52
colors, even when run in the mode where each color
class was constructed by exhaustive search, subject to
the constraint that it contain the current maximum degree
vertex.

Finally, observe that for all three graphs. fixed-K
annealing is a much stronger rival to Kempe chain
annealing than it was for n = 1,000, although on the
500-vertex graph it weakens considerably once one drops
below 52 colors, and is surpassed even by the penalty
function approach at 50 colors, mirroring its decline on
the larger graph.

2.4.3. Graphs With Unexpectedly Good Colorings

In this section, we consider the ability of the various
graph coloring heuristics to find unexpectedly good col-
orings. We generated graphs that superficially looked
like G, o5 random graphs. but in fact had colorings that
used only about half the number of colors found in the
experiments of the previous section.

In particular, having chosen a chromatic number K

and a number of vertices #n, we generated our graphs as

follows:

1. Randomly assign vertices with equal probability to K
color classes.

2. For cach pair {u, v} of vertices not in the same color
class, place an edge between v and v with probability
K /(2(K — 1)). i.e., the probability required to make
the average degree roughly n /2.

3. Pick one vertex as a representative of each class and
add any necessary edges to ensure that these K
vertices form a clique (assuming that K is not too
large, no class will be empty, so such representatives
will exist).

Using this procedure, we generated “‘cooked’” graphs
to match the graphs of the previous two sections, and
with chromatic numbers as indicated in Table IlII. The
table also presents. for each of these graphs, the running
times (per 100 runs) and the number of colors obtained
by each of the standard heuristics of Section 2.1, and
compares these results to those obtamned for the more-
truly-random counterparts of these graphs that were
studied in Sections 2.4.1 and 2.4.2. Note that although a
clever special purpose algorithm might be able to find
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Table 111
Performance of Traditional Heuristics on
Standard and Cooked Graphs

Graph 100 -SEQ 100+DSATUR 100«RLF

[V x(G) Median Best Time Median Best Time Median Best Tune
125 ~ 17 25 23 1 8m 22 20 42m 21 20 11.4m

9 23 19 1.8 m 17 10 41m 12 10 112m

250 ~ 29 42 40 69m 38 36 147 m 35 33 622m

15 41 38 69m 36 32 14.6 m 26 23 62 1m

500 ~49 73 70 27.0m 66 63 550m 60 59 75h

25 72 69 27 1m 65 61 549 m 56 47 7.1h

1000 ~ 85 127 124 1 8h 117 114 3.6h 108 106 522h
45 126 123 1.8h 116 113 35h 106 102 51.2h

the hidden colorings by identifying the vertices of the
constructed clique (which should have shghtly higher-
than-normat degrees). none of the standard heuristics
succeeds (even with 100 tries) on any one of the four
graphs. Indeed. for the larger graphs, the heuristics use a
number of colors on the cooked graphs that is only
slightly better than that which they use for the corre-
sponding standard graphs. despite the large difference in
the true chromatic numbers.

The optimal number of colors can, however, be found
by each of the four approaches we have been consider-
ing, given enough time. Table IV indicates approxi-
mately how much time that is for each approach. For
each approach. the time given in the table was sufficient
to find an optimal coloring for the corresponding graph,
and half that time did not sufficc. (For fixed-K anneal-
ing. the given settings yield legal colorings at least 90%
of the time for all four graphs.) Note that all threc
annealing approaches are faster than XRLF on all but the
125-vertex graph, and fixed-K annealing is the fastest by
far of the three. This latter observation must be taken
with several grains of salt, however, given that the times
quoted are for runs where K is already fixed at its
optimal value, i.e., with advance knowledge of the very
secret we are trymg to discover. If one had thought that
these graphs were the G, s graphs they mimic, we

would never have thought to run the fixed-K approach
with such small value of K. although we might well
have chosen the parameter settings needed for the other
three approaches to find the hidden coloring.

Also. that penalty function annealing seems t0 be
competitive with Kempe chain annealing for these graphs,
whereas it lagged far behind for the uncooked examples.
This is most likely because the ultimate color class size
for the cooked graphs is roughly twice what it was for
the originals. (Recall that our implementation of Kempe
chain annealing can take time proportional to the square
of the largest color class to generate a move. whereas
our penalty function implementation takes time only
linear in that size.)

2.4.4. Random p = 0.1 and p = 0.9 Graphs

In this section, we consider random G, , graphs with
values of p different from the p=0.5 or previous
scctions, to determine the effect of increased and de-
creased edge density on our comparisons. Table V sum-
marizes the results of experiments with G, , | graphs for
our standard values of n. For these graphs, certain
changes had to be made in the standard parameter choices
for some of the algorithms. First, the sparseness of the
graphs meant that color classes would be much larger,
and so we could no longer afford to run XRLF with as

Table IV
Times Required by the Three Annealing Approaches and XRLF to
Find Optimal Colorings of the Four Cooked Graphs“

Graph Penalty Function Anncaling  Kempe Chain Annealing Fixed-K Annealing XRLF
1V x(G) Tiune [TF. SF} Time | TF. SF] Time [TF, SF| Time [TN, XL}
125 9 341 [0.5,0.1] 47.8 [05.01] 16.3 5 [05,05] 342, 14,01*
250 15 46m [0.5,0 5] 43m [05.01] l4m [05,05] 125m [5.0]
500 25 35.1m [, 1) 18.0m 11,0 1] 89m [L,05] 107 8 m [20,0]
1.000 45 15.2h {2, 8} 14.3h [1,1] 37h [2,1] 64 1 h 640, 0]

“Here the parameter scttings for XRLF on the 125-vertex graph are marked by a “*’ to indicate that we did not use the standard values of
SETLIM = 63 and CANDNUM = 50 on this graph, but instead set these parameters to 32 and 10, respectively
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Table V
Running Times Required to Obtain Given Colorings
of G, ; , Random Graphs

Penalty Functional Anncaling Kempe Chain Annealing

Fixed-K Annecaling Successive Augmentation

Colors Hours [TF, SF] Hours [TF, SF] Hours [TF, SF) (Trials) Hours Algorithm
125-Vertex, p = 0.1 Random Graph (D = 0.0950, LB =5)
6 0.1 [0 5,0.25] 0.0 [1,0.5] 00 10.5.0.25] (7/10) 0.0  RLF[med, best]
5 2.9 [2.8] 4.8 [4, 16] 0.2 {1, 16] 4/10) 0.0 XRLF[L. 125]
250-Vertex, p = 0.1 Random Graph (D = 0 1034, LB =7) -
10 — — — — — — — 00 RLF[median]
9 0.2 [1,0.5] 0.5 [, 1 0.0 [1,0.5] (9/10) 1.8 RLF{best:45%]
8 (36.9) [4, 16] (25.6) i4, 16] 2.6 4, 16] (5/10)  (40.3)  XRLF[1280, 125]
500-Vertex, p = 0.1 Random Graph (D = 0.0999, LB = 11) .
15 - — - — — - - 0.1  RLF[median]
14 2.0 (1,1 16 [0.5,0.5] 0.1 {1,0.5] (10/10)  11.8  RLF[best:18%]
13 242 2, 16) 68.6 2, 16] 1.0 (2.2 (8/10) XRLF{320, 100]
1,000-Vertex, p = 0.1 Random Graph (D = 0.0994, LB = 19) R
24 3.2 [1,0.5] 7.0 [0.5,0.5] 03 [0.5.0 5] (10/10) 0.8 RLF[med, best]
23 13.0 (1,2] 21.0 [ 1] 0.6 [1,0.5] (6/6) 1.2 XRLF[5, 100]
2 37.0 [2,4] 124.6 1, 8] 4.1 [2,2] 4/4) 35.1  XRLF{160, 100]
21 (101 0) 2, 16] (281.9) (1, 16] 36.1 (2, 16] (2/2)  (137.0)  XRLF[640, 100]

large a value as 63 for SETLIM, settling instead for
SETLIM =20. We also discovered that we had to in-
crease the starting temperature for penalty function an-
nealing from 10 to 30, and for Kempe chain annealing
from 5 to 10, in order for the initial acceptance ratio to
reach the 30% level. (The starting temperature of 2
remained sufficient for fixed-K annealing.)

Note that here, with even bigger color classes, Kempe
chain annealing falls behind penalty function annealing.
Moreover, as with the graphs of the previous section,
both are dominated by fixed-K annealing, as is XRLF,

Table VI summarizes the results of experiments with
G, oo graphs for our standard values of n. We only
consider two of the three annealing approaches in detail
here. Given the trends in running times indicated by our
results for p=0.1 and p=0.5, it seemed highly un-
likely that penalty function annealing would be competi-
tive with Kempe chain annealing when p =0.9. (As a
test case, we ran both on the Gsq oo graph. The pen-
alty function approach required 27 hours to find a 132-
coloring, whereas Kempe chain annealing found a 131-
coloring in just 3.6 hours.) As in the p = 0.5 case, we
used starting temperatures of 5.0 and 2.0 for Kempe
chain and fixed-K annealing, respectively.

For these graphs it is possible to run XRLF in the
exhaustive mode even for n=1,000, although this
may not always be the best choice. (In particular, a 232-
coloring of the 1,000-vertex graph was obtained more
quickly with SETLIM < 1,000, as indicated in the table.)
Once again, both annealing and XRLF can find substan-
tially better colorings than traditional successive augmen-
tation heuristics like RLF and DSATUR (and the former

again dominates the latter). In contrast to the G, ;s
graphs, however, Kempe chain annealing substantially
outperforms both XRLF and fixed-K annealing on all the
graphs with n >250. Fixed-K annealing outperforms
XRLF on all graphs with n < 500, but XRLF seems to
have caught it by #n = 1,000.

2.4.5. Geometrically Defined Graphs

In this, our final section of results, we consider how the
various heuristics behave on graphs in which there is
built-in structure (but not built-in colorings). In particu-
lar, we consider the “‘geometrical”’ graphs of Part I, and
their complements. A random geometrical graph U, , is
generated as follows. First, pick 2# independent num-
bers uniformly from the interval (0, 1), and view these as
the coordinates of » points in the unit square. These
points represent vertices, and we place an edge between
two vertices if and only if their (Euclidean) distance is d
or less. Table VII summarizes our results for three
examples of such graphs, all with n = 500: a Usy o,
graph, a Usy o 5 graph, and the complement of a Usyg ¢
graph (denoted (_/500‘0 ). The densities of these graphs
were 0.0285, 0.4718 and 0.9721, respectively. (Experi-
ments with second examples of each type of graph,
having slightly different densities, yield qualitatively
similar results.)

Again, we drop penalty function annealing from the
comparison, and use starting temperatures of 5.0 and 2.0
for Kempe chain and fixed-K annealing, respectively.
The story is once again mixed. Although fixed-K anneal-
ing is the winner for the ¢ = 0.1 graph, it is outper-
formed by Kempe chain annealing for d = 0.5, and what
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Table VI
Running Times Needed to Obtain Given Colorings for

G, , o Random Graphs*”
Kempe Chain Annealing Fixed-K Annealing Successive Augmentation
Hours [TF, SF] Hours [TF, SF) (Trials) Hours Algorithm
125-Vertex, p = 0.9 Random Graph (D = 0.8982, LB = 40}
50 — — — — — 0.0 RLF[median)
48 - — — o — 0.1 RLF[best.48%]
45 0.1 [025,01] 0.0 [1,1] (8/10) 0.0 XRLFiex, 0]
4 66 12, 8] 03 [1,8] (7/10) 17 XRLF{ex. 80]
43 (46.9) [8, 16] 9.3) 18, 64] 0/3) — —
250-Vertex, p = 0.9 Random Graph (2 =0 8963, LB = 70)
84 — — - — — 00 RLF[median]
82 - —_ - — - 0.5 RLF[best:11%]
76 — — — - — 00 XRLF[ex, 60]
75 0.3 [0.25,0.1] 0.6 2,2] (8/10) (184.7) XRLFlex, 80]
74 - — 1.3 2,4] (5/10) — -
73 0.8 10.5,0.25] 5.0 [2,16] 3/4) — -
72 20.0 12,4] (48.5) [8,64] 0/1) —
71 (70 8) [2, 16] — — — — -
500-Vertex, p = 0 9 Random Graph (D = 0.9013, LB = 122)
155 — — — - — 0.0 RLF[median]
152 — — — — — 32 RLEbest 6%]
134 11 10 25,0.1] 2.7 12.2] (7/10) 0.3 XRLEF[ex, 0]
133 — - 4.8 12,4] (8/8) 0.3 XRLF[ex, 60]
132 — — 9.6 [4,4] (2/3) 1.5 XRLF[ex, 70]
131 3.6 {0.5,0.25] 9.6 [4,4] 3/3) (77.8) XRLFlex, 80]
130 6.5 [1,025] 21.6 [2,16] (2/6) -
129 15.2 1,0.5] (80 2) 18, 16] O/ — —
128 209.1 [1,1] — — — —
1,000-Vertex, p = 0.9 Random Graph (D =0 8998, LB = 217)
283 — o — — - 0.2 RLF[median]
276 — — — - — 215 RLF[best:1%]
238 10.0 [05,0.1] 38.7 [2,8] (3/3) — -
237 — — — — — —
236 - — 78.7 [2,16] 4/4) — —
235 — — 88 9 [2,16] (1/7) 0.2 XRLF[5.0]*
234 — - 84.6 [2, 16] (1/4) 3.0 XRLFlex, 0}
233 36.3 [05,0.2] (172.5) [4, 16} 0/2) 4.9 XRLF[ex, 60}
232 — — - — 11.0 XRLF[20, 70}*
231 — - — — (277.5) XRLFlex, 80]
230 44.7 [1,0.25] — — - -
229 — — — — -- — —
228 122.4 {1.1] — — — —
227 — — — — — — —
226 350 + [2,2] - — e — —

“The 232- and 235-colorings of the 1,000-vertex graph using XRLF were obtamed with SETLIM =250, CANDNUM = 50, and
TRIALNUM as specified. The Kempe chain run that found the 226-coloring was termimated by a computer crash rather than by convergence.
If the run had survived until convergence. it might have taken much more time than the 350 hour actually used (It might also have found a

better coloring )

is more surprising. both are beaten substantially by
DSATUR, a successive augmentation heuristic that fin-
ished well behind RLF on all our nongeometric graphs.
Performing 100 runs of this heuristic took only 1.3 hours
and the best coloring found was 3 colors better than we
could find in 50 or more hours using either annealing
technique or XRLF. Indeed, one in five runs of DSATUR

uses fewer colors than any of the other techniques. (The
percentages we quote here for DSATUR are based on a
set of 1,000 runs, rather than the standard 100, and so
should be fairly robust for this graph.)

Our final graph, the complement of a d = 0.1 graph,
also shows some anomalies. Here DSATUR again out-
performs XRLF, but is itself beaten by ordinary RLF.
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Table VII
Running Times Needed to Obtain Given Colorings for
Various Geometric Graphs®

Kempe Chain Anncaling Fixed-K Anncaling XRLF Successive Augmentation
Colors Hours [TF, SF] Hours | TF, SF] (Trials) Hours |TN, EL] Hours Algorithm
500-Vertex, d = 0 1 Random Geometric Graph
13 — — — — — 00 [1,01* 0.0 DSAT{med ]
12 08 [0.25.0.25) 0.0 10.5,0.5] (10/10) (71 {50, 01* 12 DSAT|best.29%]
500-Vertex, d = 0.5 Random Geometric Graph
132 — - 14 [1,2] (5/10) — — 08 RLF[med ]
131 — — 42 12.4] (6/10) — — 75 RLF{best 1%)
130 3.8 [1,05] 81 12.8] (5/10) 00 [1.01* — —
129 7.4 1, 1] 17 8 [2.16] (1/6) — — 0.0 DSAT[med.}
128 20.7* [2.2] 32.4 [4.16] (2/10) - - — —
127 72.5* 12, 8] (113.3) [4.64] 0/2) 23 [1,01* — —
126 (126 5) [2,16] — — — (59.8) [20,01F - —
125 — — — — — — — -
124 — — - — — - — 13 DSAT(best.1%]
Complement of a 500-Vertex. d = 0.1 Random Geometric Graph
95 — — — — — 01 [ex 180] — —
94 — — — - — 03 [ex. 210] — —
93 - — — — 87 [ex.270] 00 DSAT[med.]
92 — - — — — 05 [ex. 280] — -
91 — - — 18 8 [ex. 290] — —
90 40 [05,0.5] — — -— 1.9 [ex, 300] 0.0 RLF[med.]
89 50 [1,0.5] — — - (100 +) lex. 315] 1.3 DSAT{best 4 %]
88 12.3 [L,1] — - — — — 1.5 RLF|best4 %]
87 (239.8) 12, 16] 0.0 [0.5.0 5] (10/10) - —
86 — — 0.0 [1.1} (10/10) — — —
85 — — 0.0 [2.2] (10/10) —
84 — (75.3) [4.64] /1 — —

“The first five entries in the XRLF column are marked by “** 's because the parameters SETLIM and CANDNUM had to be varied to
obtain the best results, although our format only allows us to specify TRIALNUM and EXHAUSTLIM These entries were derived using
the following (SETLIM, TRIALNUM.CANDNUM ) combinations: (20, 1, 50). (30,40,50), (63,1, 1), (250, 1. 1), and (250,20,50) The
final XRLF run for the third graph had not yet terminated after 100 hours, at which pont it was killed.

The annealing implementations reassert themselves,
however. with the fixed-K approach again coming out
on top. Once the correct values for SIZEFACTOR and
TEMPFACTOR were chosen, it took only 30 seconds
per run for 85-colorings. (Much more time was spent
finding the correct parameter values, however. When we
tried to 85-color the graph with SIZEFACTOR set to 1
instead of 2, no legal coloring was found and a typical
run took an hour or more.) Another running time anomaly
is evident from the results for XRLF. Here, because of
the density of the graph, we could exhaustively search
for the best independent set at each step, and switch over
to exhaustive coloring when the number of uncolored
vertices was still quite large. Our running times, how-
ever, do not monotonically increase with EXACTLIM,
the parameter controling the switchover, but instead
gyrate wildly. (Most likely. this is due to the wide

variance in the running times of our exhaustive coloring
routine, as seen in Figure 6.)

2.5. Commentary

The experiments we report in Section 2.4 do not allow
us to identify a best graph coloring heuristic. Indeed,
they remnforce the notion that there is no best heuristic
Table VIII displays the winners for each of the graphs
we studied (except the cooked graphs, for which all three
annealing algorithms were in the same ballpark, and
pulled away from XRLF as soon as #n reached 250). For
each graph, we name the heuristic with the best perfor-
mance, along with a runner-up if the competition 1s
close. In judging performance for a given graph, we
rank the algorithms first according to the best coloring
they found. If this is a tie. we then consider the time the
algorithms took to find this best coloring. penalizing
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Table VIII
Algorithms Providing the Best Performance for Each of the Random
Graphs G, , and Geometric Graphs U, , Covered in Our Study “

Number of Vertices

Graph

Type 125 250 500 1,000
Gooa XRLF Fixed! Fixed' Fixed!
G, s Fixed, Kempe XRLF, Kempe Kempe. XRLF XRLF!
G,ao Fixed Kempe! Kempe! Kempe!
Uyon — - Fixed. DSAT

L_Jn 05 -~ — DSAT! —
Uio - - Fixed! —

“Close runners up are also listed Runaway winners are annotated with an exclama-

tion point

fixed-K annealing by a (somewhat arbitrary) factor of 3
to account for the extra overhead it must incur in choos-
ing K. If the contest is considered a runaway. we add an
exclamation point. Note that the balance tends to shift
from fixed-K annealing to Kempe chain annealing as the
graphs get denser (although this effect is masked in the
cases where XRLF and DSAT win).

At present, we have only tentative explanations of
why a given approach dominates one class of graphs and
not another. One factor no doubt is the question of
whether the data structures of our implementation are
optimized for sparse or dense graphs. (Recall that our
Kempe chain implementation is most efficient when the
color classes are small. which is likely to happen with
dense graphs.)

Another important factor may be the ‘“‘nature’ of the
good colorings for the graphs in question. Penalty func-
tion and Kempe chain annealing both usc a cost function
that rewards colorings in which the color class sizes are
skewed: better a large and a small class than two equal
sized ones. (XRLF has the same bias, given the greedy
way in which it operates.) Fixed-K annealing, on the
other hand. is neutral as to the sizes of the color classes
it constructs, and so might be expected to construct more
balanced colorings. Thus, for graphs in which good
colorings of the latter type predominate, the fixed-K
approach may well outperform the other two methods. In
particular, this appears to have been the casc with the
final graph we studied, the complement of a U, ,,
random geometric graph. Here. the colorings that had
the best costs under the Kempe chain formulation were
definitely not the best colorings (94-colorings were found
that cost less than 88-colorings). Consequently, even
though this was a very dense graph on which we might
have expected Kempe chain annealing to excel. fixed-K
annealing could in seconds find colorings that were
substantially better than anything seen by the Kempe
chain algorithm in hundreds of hours.

In considering which of the new algorithms is best in
which situation, we should not lose sight of the more
fundamental implication of our results: as a class, these
new randomized search algorithms (including XRLF)
offer the potential for substantial improvement over tra-
ditional successive augmentation heuristics. When suffi-
cient running time is available, they are usually to be
preferred over the option of performing multiple itera-
tions of a traditional heuristic, with the advantage in-
creasing as more running time becomes available. More-
over, the running times of 100 hours and more that
characterize the extremes of our experiments are not
normally necessary if all one wants to do is outperform
the traditional heuristics On our instance of G, g9 5+
XRLF took only 10 minutes on a slow computer to
improve by 8 colors over the best solution we ever found
using traditional heuristics.

The approaches we study here of course do not ex-
haust the possibilities for computationally intensive ran-
domuzed search. For instance, there is the “‘tabu’ search
technique of Glover (1989), which has been applied to
graph coloring by Hertz and de Werra (1987). As with
simulated annealing, this is a randomized modification of
local optimization that allows uphill moves. Here, how-
ever, the basic principle is closer to that used in the
Kernighan and Lin (1970) graph partitioning heuristic
and the Lin and Kernighan (1973) traveling salesman
heuristic, studied in Parts T and III of this papcr, respec-
tively. Given a solution, one randomly samples r neigh-
bors, and moves to the best one, even if that means
going uphill, unless that move is on the current “‘tabu’
list. In the implementation of Hertz and de Werra, which
is based on the fixed-K neighborhood structure, a move
that changes the color of vertex v from i to j 18
considered tabu if v was colored j at any time during
the last 7 moves. No tabu move can be made except in
the following situation: The current cost is c. the new
cost would be ¢’ < ¢, and at no time in the past has a
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move been made that improved a solution of cost ¢ to
one of cost as good as ¢’.

According to Hertz and de Werra, this technique
(augmented with special purpose routines that may be of
some use in jumping to a legal coloring at the end of the
process) outperforms the original fixed-K annealing
implementation of Chams, Hertz and de Werra. In our
own limited experiments with tabu search, we have seen
some speed-up on small instances and for easy colorings,
but no general dominance. (This may be because we
failed to tune the tabu parameters properly, or it may be
because, as indicated in Section 2.4.1, our fixed-K
annealing implementation seems to be significantly faster
than that of Chams, Hertz and de Werra.) There is
clearly much room for further investigation, both with
these algorithms and alternatives, such as the hybrids
suggested in Chams, Hertz and de Werra (1987) and
Hertz and de Werra (1987), or entirely new annealing
implementations. (One such new implementation has
been proposed in Morgenstern (1989), with promis-
ing results: For some G, 44 o5 random graphs it finds
84-colorings. )

A final issue to be discussed here is the appropriate
methodology for organizing the multiple runs that seem
necessary if one is to get the best results possible for a
given new graph from a given algorithm in a given
amount of time. For penalty function annealing, Kempe
chain annealing, and XRLF, one would presumably start
with a short run and then adjust the parameters on each
successive run so as to double the running time until no
further improvement occurs or the available time is used
up. Assuming that the last run provides the best results,
only about half the overall time will have been wasted on
preliminary work. This was essentially the procedure
used here, although we have not fully investigated the
question of which parameters to adjust when there are
choices, and it sometimes seemed to make a difference.
(As we mentioned, this is especially the case with XRLF.)
For fixed-K annealing, a similar approach can be taken,
only now one must also decide when and how far to
decrease or increase K (which is why we imposed a
factor-of-3 run-time penalty on fixed-K annealing when
ranking the algorithms for Table VIII). One possibility is
to start with a high value of K and a short running time.
Thereafter, if the run is successful, try again with the
same run-time parameters and reduce K by 1; if not, try
again with K fixed and the running time doubled. Under
this methodology, significantly more than half the time
may be spent on preliminary runs, but the time spent on
such runs should still be manageable.

Our experiments also raise questions about the
methodologies used for starting and terminating runs; we

shall have more to say about these generic issues in
Section 4.

3. NUMBER PARTITIONING

In this section, we consider the application of simulated
annealing to the number partitioning problem described
in the Introduction. For an instance A = (4, a,,...,a,)
of this problem, a feasible solution is a partition of A,
i.e., a pair of disjoint sets A, and A, whose union is all
of A. In contrast to the situation with graph partitioning
in Part I, there is no requirement that the cardinality of
the sets be equal; all partitions are feasible solutions.
The cost of such a partition is |X e 4,0 — X, 4,4/,
and the goal is to find a partition of minimum cost.

We make no claims about the practical significance of
this NP-hard problem, although perfect solutions (ones
with cost 0) might have code-breaking implications
(Shamir 1979). We have chosen it mainly for the ex-
tremely wide range of locally optimal solution values
that its instances can have (as measured in terms of the
ratio between the bset and the worst: see below),
and because of the challenges it presents to simulated
annealing.

The major challenge is that of devising a suitable and
effective neighborhood structure. We shall argue that the
natural analogs and generalizations of the structures for
graph partitioning and graph coloring have serious limi-
tations, and then show experimentally that the simulated
annealing procedure does not have enough power to
overcome these drawbacks. This does not imply that
there is no way of successfully adapting simulated an-
nealing to this problem. but at present we can think of no
better alternatives than the ones we consider.

3.1. Neighborhood Structures

The “*natural”” neighborhood structures referred to above
form a series, SW,,SW,,.... In the neighborhood
graph SW,, there is an edge between solutions (A ,, A4,)
and (B, B,) if and only if A, can be obtained from A,
by “‘swapping’’ k or fewer elements, i.e., | A, - B, | +
| B, — A, | < k. We shall refer to SW, as the k-swap
neighborhood. (Our annealing implementation for graph
partitioning in Part I extends the definition of solution to
include all partitions and then uses the 1-swap neighbor-
hood graph.)

The limitations of these neighborhoods are illustrated
(and emphasized) when we consider instances consisting
of random numbers drawn independently from a uniform
distribution over [0, 1]. Let I, be the random variable
representing an  n-element instance of this type and
OPT(1,) represents the optimum solution value for /,.
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Karmarkar et al. (1986) have shown that the expected
value of the optimal solution value OPT([l,) is
O( \/5/2”), i.e., exponentially small. In contrast, the
expected value of the smallest cost difference between
neighboring solutions under neighborhood SW, is about
1/ n*, only polynomially small. Thus, any reasonable
solution will be a local optimum of the neighborhood
structure and will be buried in a deep ““valley” of the
solution space, i.e., all its neighbors will have values
that are worse by very high multiplicative factors. More-
over, thc most frequent such local optima will them-
selves be worse than the best by very high multiplicative
factors. Thus, a local optimization algorithm, if started
from a random partition, is almost certain to stop at a
relatively bad solution.

Can simulated anncaling do any better? Given the fact
that annealing allows occasional uphill moves and runs
for a long time, we would expect a typical annealing run
to visit many distinct local optima, and so the best
solution it sees should most likely be better than the
average solution found by local optimization. But would
it be the case (as it was for graph partitioning) that this
best is better than what could be obtained by simply
spending the same amount of time performing multiple
runs of local optimization from random starts? The
‘“‘mountainous’” naturc of the solution space raises
doubts.

Moreover, it will not be enough merely to improve
slightly on local optimization. This is because there
exists an efficient algorithm, not based on local optimiza-
tion or neighborhood structures at all, that should, at
least asymptotically, outperform any local optimization
algorithm based on a neighborhood SW, for some fixed
k. This is the ‘‘differencing’ algorithm of Karmarkar
and Karp.

3.2. The Competition

The differencing algorithm runs in O(#log n) time. It
works by creating a tree structure with the elecments of
A as vertices, and then forming a partition by 2-coloring
the tree and letting A, be the set of elements with color
i for ie{l,2}. (Such a coloring is unique and con-
structible in linear time.) The tree is constructed as
follows.

We begin with a vertex for each element, labeled by
the value of that element and declared to be *‘live.”” We¢
then repeatedly perform the following operations until
there is but a single live vertex: 1) Find the two live
vertices u and v with the largest labels (ties are
broken arbitrarily), and assume label(u) 2 label(v). 2)
Add an edge between u and v, declare v to be ‘“dead,”’
and set label(u) = label(u) — label(v). (This operation
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essentially makes the decision to put # and v on
opposite sides of the partition. postponing for the time
being the decision as to which sides those are to be.)

It is easy to prove inductively that at any point in the
construction we will have constructed a forest in which
each tree contains exactly one live vertex, and the label
of that vertex is precisely the value of the partition
induced by that tree (the difference between the sums of
the two sets that we obtain by 2-coloring that tree).
Thus, the value of the eventual partition formed is
simply the label of the final live vertex.

For random instances of the type we have been dis-
cussing, the expected value of this final label is thought
to be O(1/n'8"), which is asymptotically smaller than
the expected smallest move size for any of the neighbor-
hoods SW),. (The O(1/n'#") has not actually been
proved for the differencing algorithm, but rather for a
variant specially designed to simplify the probabilistic
analysis (Karmarkar and Karp). There is no apparent
reason, however, why this variant should be better than,
or even as good as, the original.) Although O(1/n'¢")
is still far larger than the cxpected optimum, it offers
formidable competition to other approaches, and simu-
lated annealing would have to improve substantially on
local optimization to be in the running. Can it do so?

3.3. Implementation Details

To investigate this question, we construct implementa-
tions based on both the 1-swap and 2-swap neighborhood
structures. Note that, if all the anncaling parameters of
our generic algorithm in Figure | are fixed, the latter
implementation will take much more time per tempera-
ture, as its neighborhood size is n+n(n -~ 1)/2 =
(n* + n)/2 versus simply a1 for the SW, neighborhood.
The neighborhood size for SW,, k>2 would analo-
gously have been Q(n*) and we abandon all those
neighborhood structures as computationally infeasible.
Among the problem-specific subroutines used in our
implementation only the INITIAL SOLN( ) and
NEXT_CHANGE( ) routines merit detailed discussion.
(The others are determined by our choice of neighbor-
hood structure and the details of the problem itself.) For
our initial solution, we pick a random partition by inde-
pendently ““flipping a fair coin™ for each a, to decide
the set to which it is assigned. To pick a random
neighbor under SW,, we simply choose a random ele-
ment of A and move it from 1its current set ( A, or A,)
to the other set. Rather than choose a new random
element each time NEXT_CHANGE( ) is called, how-
ever, we 1itially choose a random permutation of A,
and then at each call simply choose the ncxt element in
the permutation. until the permutation is used up. Every
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| A| moves we rescramble the permutation and start
over. This approach was mentioned in Part I and was
observed to yield a more efficient use of time. It also
helps ensure that the annealing process will end up with
a solution that is truly locally optimal (if there is an
improving move, it must be encountered sometime in the
next 2n trials). An analogous process is used for the
SW, case, only now we work from a permutation of all
1- and 2-element subsets X of 4.

Since we were mainly interested in deriving rough
order-of-magnitude estimates of tradeoffs between run-
ning time and the quality of the annealing solutions
found, we did not do extensive experiments to optimize
the parameters of the generic algorithm, but merely
adopt reasonable values based on the lessons learned
from our experiments with graph partitioning in Part I.
(We did find it necessary to modify the generic termina-
tion condition, however, due to the anomalous way that
annealing behaves for this problem; see the next section.)
In particular, we set INITPROB =0.5 and TEMP-
FACTOR = 0.9. and adjust the length of time spent in
the annealing process by varying SIZEFACTOR. (For
these experiments we kept CUTOFF = SIZEFACTOR;
i.e., cutoffs were not used.)

The remaining detail to be filled in is the method for
selecting the starting temperature. As no one temperature
seemed to work equally well for all n, we chose to use
an adaptive method. To explain this, we should say a
little bit about how our experiments were performed.
For each instance and value of SIZEFACTOR consid-
ered. we performed 10 annealing runs, all with the same
starting temperature. This common starting temperature
was based on the average uphill move encountered when
calling NEXT CHANGE( ) N times (where N was the
neighborhood size) for each of 10 randomly chosen
initial solutions produced by INIT _SOLN( ). The initial
temperature was chosen so that the probability of accept-
ing this average uphill move was INITPROB =0.5.
Such a technique is simpler but somewhat less accurate
than the “‘trial run’’ technique used for selecting starting
temperatures in Part I. It tends to result in higher initial
temperatures, and hence, somewhat longer running times.
Fortunately, our results did not depend on the fine
details of the running times, as we shall see.

3.4. Experimental Results

All our experiments concern random instances of the
type discussed in Section 2.1. In order that rounding
effects not obscure the quality of the solutions generated
by the Karmarkar-Karp algorithm. each input number
was generated in multiprecision form, with 36 decimal
digits to the right of the decimal point. and multi-
precision arithmetic was used throughout.

Figure 9 presents a ‘‘time exposure’’ of an individual
annealing run on a random 100-clement instance, using
the SW, neighborhood structure and SIZEFACTOR =
16. (The generic termination conditions were turned off
and the time exposure was run until visual evidence
indicated that ‘‘freezing’’ had set in.) The x-axis of the
plot measures time, or more precisely, the number of
calls to NEXT _CHANGE( ) divided by the neighbor-
hood size N = 5,050. The y-axis gives the value of the
objective function on a logarithmic scale. The points in
the plot represent the current solution value, as sampled
once every 5.050 steps. Also depicted is a horizontal line
with the y-coordinate equal to the value of the solution
found by the Karmarkar-Karp algorithm.

Note that although the best solution encountered was
better than the Karmarkar-Karp solution, the value to
which the process converged was substantially worse,
and indeed was little better than the average value seen
during the last quarter of the cooling schedule. This is in
contrast to standard annealing time exposures like those
for graph coloring in the previous section, where the
process converges essentially to the best value seen.
Since our implementation outputs the best solution seen
rather than the last, this is not a fatal defect, although it
does indicate that the neighborhood structure is having a
rather striking effect on the annealing process.

These anomalies will also confuse our generic termi-
nation test, which was predicated on the assumption that
“‘freezing’’ began when one stopped seeing improve-
ment in the current ‘‘champion’ solution. As suggested
by Figure 9, the time at which the final champion

mOZTATTT—0
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Figure 9. The evolution of the solution value for a
random 100-element instance under simulated
annealing with the 2-swap neighborhood
structure, compared to the solution found us-
ing the Karmarkar-Karp algorithm (dotted
line). (Note that one isolated annealing data
point falls below the dotted line.)
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appears may be a random phenomenon, only tangentially
related to the convergence of the annealing process.
Since for this study we werc interested in the final frozen
value as well as the champion, we modified the termina-
tion conditions in the experiments reported below as
follows: To halt. we require that the acceptance ratio be
less than MINPERCENT = 1% and that the solution
value remain unchanged during each of the last 10
temperatures (or more precisely, that the values reported
at the end of each of those temperatures all be the same).

With this change, we ran a suite of experiments on a
200-element random instance, and a 500-element random
instance, summarized in Figures 10-13. Our first exper-
iment concerned the 200-element instance and the 1-swap
neighborhood. We performed 10 trials each with SIZE-
FACTOR taking on values cqual to the powers of 2
running from 2 to 2,048. Figure 10 depicts the final and
best solutions found for each run, marked by *“‘0”’s and
“*+7’s, respectively. and plotted as a function of running
time. For comparison purposes, the value of the solution
found by the Karmarkar-Karp algorithm is once again
represented by a horizontal dotted line.

In contrast to the behavior of anncaling on graph
partitioning and graph coloring, here the final annealed
solution values do not appreciably improve as running
time increases. but remain in the vicinity of the expected
smallest move for this neighborhood. i.e.. 1/200=
0.005, far above the Karmarkar-Karp solution. To be
more precise, the average of log,q(difference) over all
final solutions found (regardless of running time) is
—2.27. whereas log 4(1/200) = —2.30. Interestingly,
the smallest possible move for this instance 1s uncharac-
teristically large, slightly bigger than 0.03. yielding
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Figure 10. Final and best solutions (0o’s and + s, rc-
spectively) found by 1-swap annealing for a
random 200-element number partitioning in-
stance, as a function of running time as
SIZEFACTOR increases from 2 to 2,048,
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log,0(0.03) = ~1.52, and 1-swap local optimization only
has —1.80 as its average value for log,q(difference).
Thus. although time spent on annealing in excess of 50
seconds secms wasted if one is interested only in final
solutions, that first 50 seconds seems to have been worth
something.

The best solutions tell a different story: thesc im-
proved steadily with increased running times, approach-
ing the solution value obtained by the Karmarkar-Karp
algorithm. Note, however, that in this range we are
spending well over 10,000 times the 1.1 seconds re-
quired by Karmarkar and Karp, which is enough time for
over 100,000 runs of 1-swap local optimization (ignoring
input time. which can be amortized, 10 such runs can be
performed in a second). Figure 11 compares our anneal-
ing results with those obtained by spending an equivalent
amount of time performing local optimization from ran-
dom starts. For each value J = 500.1,000....,
512,000, we perform 10 independent sets of J runs of
local optimization, and plot the best solution n that
subset versus the overall running time for the group (as
estimated from our figure for the average time per run).
These points, marked by ‘0’s, were then combined with
the data points for annealing bests from Figure 10.

Note that across the board local optimization does just
as well as annealing, if not better. Morcover, cven if we
could speed up our annealing implementation by a factor
of 4, the resulting comparison (obtained by shifting the
local optimization data points two steps to the right)
would still be about equal. When we turn to the 2-swap
neighborhood, or larger instances under the l-swap
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Figure 11. Comparison of best solutions found on an-
nealing runs (+’s) with best solutions found
by performing multiple starts of local opti-
mization for an equivalent amount of time
(0’s). (Results are for the 200-element in-
stance of Figure 10, with both algorithms
using the 1-swap neighborhood.)
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neighborhood, the comparison is no longer close, and
multiple start local optimization substantially outper-
forms annealing, as can be scen in Figures 12 and 13.

Figure 12 shows the results for the 2-swap neighbor-
hood and the 200-element instance of Figures 10 and 11.
The best solutions found by annealing during 10 runs
each for SIZEFACTOR = 0.25, 0.5, 1, 2, 4 and 8 are
plotted. along with the best solutions found during 10
trials each of 150, 300, 600. 1,200, 2,400 and 4,800
local optimization runs. (For the 2-swap neighborhood,
local optimization takes about 6.5 seconds per run, so
150 runs take roughly 1,000 seconds.) Many data points
fall below the line representing the Karmarkar-Karp
solution, although most of them come from local opti-
mization. The annealing bests appear to be only slightly
better on average than those obtained in equivalent time
using the 1-swap neighborhood, as shown in Figure 10.
(Although not depicted here, the final values found by
annealing were again relatively independent of running
time, and slightly better than those obtained by local
optimization. Here the average of log,(difference) for
all annealing runs was —4.76, compared to —4.60 for
local optimization. Both these values are substantially
better than those we obtain using the 1-swap neighbor-
hood structure, and presumably reflect the fact that much
smaller moves are possible with the SW,, on the order
of 1/2007 instead of 1/200; note that log ,(1/200%) =
—4.53))

Figure 13 shows the results for a 500-element instance
and the 1-swap neighborhood. Here annealing was run
with values of SIZEFACTOR going up by factors of 2
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Figure 12. Comparison for the 2-swap neighborhood of
best solutions found on annealing runs (+s)
with best solutions found by performing
multiple starts of local optimization for an
equivalent amount of time (0’s). (Results are
again for the 200-element random instance
of Figure 10, and the dotted line represents
the Karmarkar-Karp solution.)
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Figure 13. Comparison for the l-swap neighborhood
and a 500-element random instance of best
solutions found on annealing runs (+ ’s) with
best solutions found by performing multiple
starts of local optimization for an equivalent
amount of time (0’s).

from 1-512. (The final values found were again rela-
tively independent of running time, with the average of
log \((difference) for all annealing runs being —3.57,
compared to — 3.04 for local optimization and —2.7 for
log ((1/500). For this instance, the smallest possible
move was substantially smaller than expected.)

Once again, local optimization substantially outper-
forms annealing on a time-equalized basis. Also, as
expected, both annealing and local optimization are much
further away from the Karmarkar-Karp solution value
than they were in the 200-element case. This is true even
if we allow for a linear increase in running time with
instance size. as happens with annealing when we com-
pare results for a fixed value of SIZEFACTOR. For
example. when SIZEFACTOR =512, the median an-
nealing best is only 40 times larger than the Karmarkar-
Karp solution when »n =200, whereas it is roughly
10,000 times larger when s = 500. For local optimiza-
tion and equivalent running times, the corresponding
ratios are roughly 40 and 150—still growing, but not
quite so rapidly.

We performed limited experiments using the 2-swap
neighborhood on the 500-element instance, but, within
the 100,000 second time bound (approximately 30 hours)
neither 2-swap annealing nor 2-swap local optimization
did as well as our l-swap results. (The quadratic growth
rate of the 2-swap neighborhood seems to have begun to
take its toll; one run of 2-swap local optimization takes
40 seconds on average, versus 0.25 seconds for 1-swap
local optimization.) Thus, although we could approach
and even surpass the performance of the Karmarkar-Karp
algorithm when »n =200, given large but feasible
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amounts of running time, our luck seems to have run out
by the time n = 500.

We did not perform experiments for values of n > 500,
but the trends are already obvious and conform to our
expectations: Annealing (and local optimization, to a
slightly lesser extent) will be even more substantially
outclassed by Karmarkar Karp as »n continues to in-
crease. Note that typically values for log,,
(Karmarkar-Karp) are less than: — 13 for n = 1,000
(in 6.5 seconds), — 16 for # = 2,000 (in 13.6 seconds),
and ~24 for n=10,000 (in 75.8 seconds). Thus,
number partitioning, at least for the types of ran-
dom instances we have been considering, illustrates the
limitations of simulated annealing as a general technique.
When the solution space is sufficiently mountain-
ous, annealing’s advantage over straightforward multiple
start local optimization can be lost entirely. Moreover,
other approaches, not tied to the concept of navigating
around a solution space. may be able to outperform it
substantially.

There remains the question of whether some other
neighborhood structure for the problem, perhaps using
different notions of solution and cost, might prove more
amenable to annealing. We do not rule out this possi-
bility, although at present we see not reasonable al-
ternatives. The natural idea of modifying the annealing
implementation by replacing difference as the objec-
tive function by log(difference) appears to be of little
help, based on limited experiments. We leave the invest-
igation of additional possibilities to future researchers.

4. CONCLUSION

In this paper, we consider implementations of simulated
annealing for two problems that had previously not been
thought accessible to local optimization and its variants:
graph coloring and number partitioning. Our graph col-
oring results, as summarized in Section 2.5. were gener-
ally positive for simulated annealing, assuming one can
tolerate the large computation times involved. The re-
sults for number partitioning were, as expected, decid-
edly negative, with annealing substantially outperformed
by the much faster Karmarkar-Karp algorithm, and even
beaten (on a time-equalized basis) by multiple start local
optimization.

This all fits in with thc view expressed in Part I of this
paper (Johnson et al. 1989), that annealing is a poten-
tially valuable tool but in no ways a panacea. Part III
(Johnson et al. 1990) will conclude this series with an
exploration of how well simulated annealing does against
the more traditional competition on perhaps the most
famous combinatorial optimization problem of them all,
and the one for which it was originally touted by Cerny
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(1985) and Kirkpatrick, Gelatt and Vecchi (1983): the
traveling salesman problem.

In performing our final experiments for that paper
shall take into account several lessons learned from the
experiments reported here. First, due to difficulties we
encountered, it has become clear that both our starting
and tecrminating procedures need revision.

Our current termination tests ask whether FREEZE _
LIM consecutive temperatures have occurred in which:
a) the acceptance ratio was below MINPERCENT, and
b) no improvement in the best solution secen has taken
place. For several types of instances encountered. we
had to make major changes in the termination parameters
simply because an abundance of 0-cost moves kept the
acceptance frequency high, even though no further im-
provement in cost was occurring. Thus, the termination
condition should probably be altered so that only the rate
at which uphill moves are accepted is relevant (a very
simple modification).

We also found oursclves regularly having to choose
starting temperatures in an ad hoc manner because the
generic methods we had devised for this (using cither
trial runs or multiple calls to NEXT_CHANGE) were
not sufficiently robust. We suspect that, for most prob-
lems, starting temperatures can be determined using
simple problem-specific formulas (analytically or empiri-
cally derived) that depend only on the desired initial
acceptance ratio and a few easily computable parameters
of the instance. For instance, | V| and | £| might well
suffice in the case of graph coloring. Thus, there 1s
likely to be a problem-specific INITIAL TEMP routine
in our future implementations.

A final observation is that the running-time/quality-
of-solution tradeoff inherent in most annealing imple-
mentations may well extend far beyond the standard
limits of acceptable running time. In our graph coloring
experiments, we saw positive results come out of runs
that took a week or more of continuous computing. That
this may be of more than academic interest follows from
the rapid rate at which the price of computer cycles is
declining. That compute-week could be almost free if it
were spent on one of the idle personal computers that
now decorate many offices, or it could be an overnight
background run on one of the much faster machines
becoming morc widely available. For problems in which
the economic value of finding improved solutions is
substantial, this is a thought to keep in mind.
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