Atelier — Création d’'un MakeFile

1 A quoigasert?

Un fichier Makefile est un texte qui indique & la commande makecomment fabriquer des fichiers
a partir d'autres fichiers,

On rentre dans un fichier Makefile des régles qui indiquent comment on fabrigue les fichiers,
et la commande make lance la fabrication.

Le plus souvent, c'est utilisé pour se simplifier la vie pour le développement des programmes
d’une certaine taille, dont les sources sont répartis en plusieurs morceaux compilés séparément.

Mais commencgons par un exemple simple.

1.1 Exemple : un source C+4+
Vous avez écrit un programme hello.cc

#include <iostream>

int main() {
std :: cout << "Hello, -world” << std::endl;
}

“a la main” vous compilez ce programme en langant la commande

g++ -Wall -o hello hello.cc

Atelier — Création d’'un MakeFile

1.2 Un premier Makefile :

Vous obtiendrez le méme résultat en créant un fichier Makefile qui contiendrait

hello: hello.cc
g++ —Wall —o hello hello.cc

(attention, la seconde ligne commence par une tebulation, pas par des espaces)
et en lancant la commande make quand vous voulez recompiler.

1.3 Explications

Ce Makefile se lit ainsi
— Le fichier cible hello dépend de hello.cc. On considére qu'il est & jour si il existe (!) et

qu'il a été fabriqué jijaprés;/i; la derniére modification de hello.cc
— pour le (re)-fabriquer, il faut lancer la commande g++ ...

1.4 Avantages

Pour recompiler le source
1. plus besoin de relancer une longue commande, il suffit de taper « make »
2. si le fichier hello est & jour, la commande make ne recompilera pas hello.cc, puisque c'est
inutile.
Sur un exemple aussi simple (un seul source & compiler), l'intérét d’avoir a apprendre I'utili-
sation des Makefiles n'est pas flagrant, mais ¢a va venir.

Atelier — Création d’'un MakeFile

1.5 Avec plusieurs cibles

Un Makefile comporte généralement plusieurs cibles, voyons un exemple plus détaillé

hello: hello.cc
g++ —Wall —o hello hello.cc

hello .pdf: hello.cc Makefile
a2ps —o — hello.cc Makefile | ps2pdf — hello.pdf

#
Cibles habituelles
#

clean :
rm —f %~

mrproper: clean
rm —f hello

Quelques explications

1. La commande « make » sans paramétre lance la fabrication (éventuelle) de la premieére cible
hello. On aurait le méme effet en langant « make hello ».

2. « make hello.pdf » fabrigque un fichier PDF contenant le source et le makefile.

3. « make clean » fait le ménage dans les fichiers intermédiaires (fichiers de sauvegarde I'éditeur
de textes, etc)

4. « make mrproper » fait le grand ménage, en ne conservant normalement que les sources de
I’application.

Recommandation : Avoir ces cibles clean et mrproper (Monsieur Propre), est une pratique
usuelle (et fortement conseillée).

Atelier — Création d’'un MakeFile

2 Makefiles pour la compilation séparée

C’est la compilation séparée qui fait apparaitre tout le charme du Makefile aux yeux des
programmeurs.

2.1 Un exemple
Vous avez eu l'idée d’écrire une fonction afficher(string message) ; dans un fichier séparé

// fichier afficher.ce

#include <iostream>
#include "afficher . h”

void afficher (std::string message)

{
}

std :: cout << message << std::endl;

Le prototype est déclaré dans un fichier d’entéte :

// fichier afficher.h
#include <iostream>

void afficher (std::string message);

et le programme hello.cc y fait référence

// fichier hello.ce
#include "afficher .h”
int main()

afficher (" Bonjour ,_monde”);

Atelier — Création d’'un MakeFile

2.2 Le Makefile, version naive

La compilation séparée comportera deux étapes
- la compilation séparée des deux sources (.cc) pour fabriquer les modules objets (.0)

- I'édition des liens des fichiers objets (.0) pour constituer I'exécutable

hello: hello.o afficher.o
g++ —o0 hello hello.o afficher.o

hello.o: hello.cec afficher.h
g++ —Wall —c hello.cc

afficher.o: afficher.cc afficher.h
g++ —Wall —¢ afficher.cc

hello.pdf: hello.cc afficher.h afficher.cc Makefile
a2ps —o — hello.cc afficher.h afficher.cc Makefile \
| ps2pdf — hello. pdf

#
Cibles habituelles

#

clean:
rm —f %7 =.0

mrproper: clean
rm —f hello

Atelier — Création d’'un MakeFile

3 Variables cible, liste de dépendances, premiére dépendance

Le Makefile ci-dessus peut étre largement simplifié en utilisant 3 variables prédéfinies.

$Q cible
$~ liste des dépendances
$< premiére dépendance

Dans une commande,
— $@ contient la cible (target). La premiére régle (édition des liens) pourrait s'écrire

hello: hello.o afficher.o
g++ —o 8@ hello.o afficher.o

—~ §" contient la liste des dépendances. La premiére régle peut étre simplifiée davantage

hello: hello.o afficher.o
g++ —o $@ §°

de méme que la 3iéme

hello.pdf: hello.cc afficher.h afficher.cec Makefile
a2ps —o — $° | ps2pdf - 8@

qui devient beaucoup plus lisible.
— $<, qui contient la premiére dépendance, rend service pour les compilations séparées

‘hcllo.o: hello.cec afficher.h
g++ —Wall —c¢ $<

Atelier — Création d’'un MakeFile

3.1 Makefile avec variables cible, dépendances...

hello: hello.o afficher.o
g+ —o $@ §°

hello.o: hello.cec afficher.h
g++ —Wall —¢ $<

afficher.o: afficher.cc afficher.h
g++ —Wall —¢ $<

hello.pdf: hello.cc afficher.h afficher.cc Makefile
a2ps —o — $° | ps2pdf - 8@

Atelier — Création d’'un MakeFile

4 Variables définies par 'utilisateur

On peut définir des variables pour travailler plus commodément. Par exemple on s'en sert pour
définir la liste des fichiers sources, la liste des entétes, et la liste de modules objet.

sources=hello.cec afficher.cc
entetes=afficher.h
objets=$(sources:.cc=.0)

hello: $(objets)
g+ —o $@ §°

hello.o: hello.ce afficher.h
g++ —Wall —¢ $<

afficher.o: afficher.cc afficher.h
g++ —Wall —¢ $<

hello.pdf: $(sources) &(entetes) Makefile
a2ps —o — §° | ps2pdf - 8@

o

- 'affectation se passe de commentaires
— on peut ajouter des élements & une variable. On aurait pu écrire :

sources = hello.cc
sources -+= afficher.cec

— l'expansion d’une variable se fait par “dollar parenthéses”
— possibilité de substitution pendant l'expansion. Ligne 3, la liste des modules objets est
déduite de la liste des fichiers sources, en remplagantles suffixes .cc par .o

Atelier — Création d’'un MakeFile

5 Les commandes par défaut

La commande make posséde un stock de dépendances et de régles par défaut qu'on peut mettre
a profit pour alléger encore les Makefiles.

Par exemple, si vous avez dans votre répertoire un fichier « prog.cc » la commande « make
prog.o » lance automatiquement la commande

g4+ prog.cc -0 prog

sans qu'on ait écrit quoi que ce soit dans le Makefile.
Clest le résultat
— d'une dépendance implicite : si prog.cc existe dans le répertoire, alors le fichier prog dépend
de prog.cc
- d'une commande par défaut : pour fabriquer un exécutable (sans suffixe) & partir d’un source
C++ (nom + suffixe .cc), on lance la commande de compilation adaptée g++ ... si rien
d’autre n’est précisé.

Atelier — Création d’'un MakeFile

5.1 [Utiliser les variables prédéfinies

Ici se pose un petit probléme : conserver l'option « -Wall » pour les compilations séparées.
Heureusement, les commandes par défaut sont paramétrables par 'intermédiaire de variables.
Ici on affecte donc l'option a la variable CXXFLAGS

CXXFLAGS=—Wall

sources=hello.cec afficher.cc
entetes=afficher.h
objets=$(sources:.cc=.0)

hello: $(objets)
g+ —o $@ §°

hello.o: hello.cec afficher.h
afficher.o: afficher.cc afficher.h

A

hello.pdf: $(sources) $(entetes) Makefile
a2ps —o — $° | ps2pdf - @<

clean:
rm —f %7 =.0

mrproper: clean
rm —f hello

Atelier — Création d’'un MakeFile

5.2 Redéfinir une régle par défaut

Pour la premiére cible, malheureusement, la commande par défaut ne convient pas. Si on
éerivait
CXXFLAGS-—Wall

hello: $S(objets)

make lancerait « gcc -o hello hello.o afficher.o » (au lieu de g++), donc sans faire
référence & la bibliothéque standard C++.
Un moyen de s’en sortir est de redéfinir les commandes par défaut, en disant :

pour fabriguer un fichier exécutable (sans suffixe) & partir de son module objet
(suffixe .0) et d’autres éventuellement, il faut lancer la commande d’éditions des liens
adaptée & C++.
Ce qui s’éerit :
%: %.o
$(LINK.cc) —o $@ §°

Comme vous l'avez deviné, la variable prédéfinie LINK. cc contient la commande qui va bien
pour I'édition des liens.

Atelier — Création d’'un MakeFile

5.3 Makefile
CXXFLAGS—Wall

sources=hello.cc afficher.cc
entetes=afficher.h
objets=$(sources:.cc=.0)

%: %.o
$(LINK.cc) —o $@ §°

hello: $(objets)
hello.o: hello.cec afficher.h
afficher.o: afficher.cc afficher.h

i

hello.pdf: $(sources) $(entetes) Makefile
a2ps —o — §° | ps2pdf - @<

clean:
rm —f %7 =.0

mrproper: clean
rm —f hello

Atelier — Création d’'un MakeFile

6 Construction automatique des dépendances

On peut faire encore mieux : s'éviter en grande partie la fastidieuse écriture des dépendances.

6.1 la commande makedepend

La commande makedepend est un outil complémentaire qui effectue & votre place la recherche
des dépendances entre fichiers sources.
En pratique, si on tape

makxedepend hello.cc afficher.cc

les lignes suivantes
DO NOT DELETE

afficher.o: afficher.h
hello.o: afficher.h

sont ajoutées i la fin du Makefile, remplacant éventuellement les lignes qui étaient déja aprés
"DO NOT DELETE".

Ces dépendances sont obtenues en examinant les fichiers cités, pour trouver quels fichiers sont
inclus (inclusions & plusieurs niveaux éventuellement)

Les dépendances calculées se combinent harmonieusement avec les dépendances implicites
(afficher.o : afficher.cc, etc.) et les commandes par défaut pour que tout se passe bien.
Il n'y a done plus besoin d'indiquer comment fabriquer les modules objets. C'est fait pour.

Atelier — Création d’'un MakeFile

6.2 Makefile final
Voici done la version finale du Makefile :

CXXFLAGS-=—Wall

sources = hello.cc afficher.cec
entetes = afficher.h

objets = $(sources:.cc=.0)
%: %.o0

$(LINK.cc) —o $@ §°
hello: $(objets)

i

hello.pdf: $(sources) $(entetes) Makefile
a2ps —o — $§° | ps2pdf - @<

clean:
rm —f %~ =.0 =, bak

mrproper :clean
rm —f hello

depend:

makedepend ${sources)

Comparez avec la premiére version...

Atelier — Création d’'un MakeFile

6.3 Mode d’emploi

1. Avant la premiére utilisation, faire « make depend pour créer la liste des dépendances

2. idem guand vous ajoutez de nouveaux fichiers sources, ou que vous changez les #include
dans vos programmes.

7 Un exemple plus complexe (Programmation Objet)

Prenons un exemple plus complexe : deux programmes paie.cc et emploiDuTemps.cc qui font
référence & des classes Titulaire et Vacataire dérivées de Enseignant (classe abstraite). Ces
mémes classes sont utilisées dans 2 programmes de test testTitulaire.cc et testVacataire.cc.

Construction par morceaux : tout bien compté, il v a done 3 classes avec leurs entétes
' classes=Enseignant.cc Titulaire.cc Vacataire.cc
et 4 programmes dont il faudra produire les exécutables
'progs=testTitulaire.cc testVacataire.cc paie.cc emploiDuTemps.cc
avec les dépendance explicites

Vacataire.o
Vacataire.o

paie: paie.o Enseignant .o Titulaire.
emploiDuTemps: emploiDuTemps.o Enseignant.o Titulaire.
testTitulaire: testTitulaire.o Enseignant.o Titulaire.
testVacataire: testVacataire.o Enseignant.o Vacataire.

ce qui nous fait 10 sources, 7 modules objets et 4 exécutables.
Mais le makefile reste & taille humaine!

Atelier — Création d’'un MakeFile

CXXFLAGS=—Wall

all: S(execs)

paie: paie.o Enseignant .
emploiDuTemps: emploiDuTemps.o Enseignant

testTitulaire: testTitulaire.o Enseignant.
testVacataire: testVacataire.o Enseignant

a2ps —o — §° | ps2pdf - @<

a2ps —o — $§° | ps2pdf — @<
HHRHHHHHH

%: %.0
$(LINK.cc) —o 8@ §°

clean:
m —f %~ =.0 =, bak

mrproper :clean
rm —f ${execs)

depend:
makedepend $(progs) ${classes)

©

.0

[+]

.0

applis = paie.cc emploiDuTemps.cc

tests = testTitulaire.cc testVacataire.cc
classes = Enseignant.cc Titulaire.cc Vacataire.cc
entetes = $({classes:.cc=.h)

execs = $(tests:.cc) $(progs:.cc=)

Titulaire.
Titulaire.

Titulaire.
Vacataire.

listing . pdf: &(applis) $(entetes) ¥(classes) Makefile

o ©°

Vacataire.o
Vacataire.o

listing —tests.pdf: $(tests) ${entetes) &(classes) Makefile

