145 lines
5.4 KiB
Python
Executable File
145 lines
5.4 KiB
Python
Executable File
#!/usr/bin/python
|
|
# -*- coding:utf-8 -*-
|
|
"""
|
|
Implementation of the plotting and visualization functions.
|
|
"""
|
|
import numpy as np
|
|
import time
|
|
import matplotlib.pyplot as plt
|
|
from lib.units import *
|
|
|
|
|
|
class DynamicUpdate():
|
|
#Suppose we know the x range
|
|
min_x = -1
|
|
max_x = 1
|
|
|
|
plt.ion()
|
|
|
|
def __init__(self, dyn_syst):
|
|
self.dyn_syst = dyn_syst
|
|
|
|
def set_lims(self, factor=1.5):
|
|
self.ax.set_xlim(factor*self.min_x, factor*self.max_x)
|
|
self.ax.set_ylim(factor*self.min_x, factor*self.max_x)
|
|
self.ax.set_zlim(factor*self.min_x, factor*self.max_x)
|
|
|
|
def set_blackstyle(self):
|
|
self.fig = plt.figure(figsize=(10,10), facecolor='k')
|
|
self.ax = self.fig.add_subplot(projection='3d')
|
|
self.ax.set_facecolor('k')
|
|
self.ax.xaxis.label.set_color('w')
|
|
self.ax.yaxis.label.set_color('w')
|
|
self.ax.zaxis.label.set_color('w')
|
|
self.ax.tick_params(axis='x',colors='w')
|
|
self.ax.tick_params(axis='y',colors='w')
|
|
self.ax.tick_params(axis='z',colors='w')
|
|
self.ax.w_xaxis.line.set_color('w')
|
|
self.ax.w_yaxis.line.set_color('w')
|
|
self.ax.w_zaxis.line.set_color('w')
|
|
self.ax.w_xaxis.set_pane_color((0,0,0,0))
|
|
self.ax.w_yaxis.set_pane_color((0,0,0,0))
|
|
self.ax.w_zaxis.set_pane_color((0,0,0,0))
|
|
|
|
def launch(self, blackstyle=True):
|
|
#Set up plot
|
|
if blackstyle:
|
|
self.blackstyle = True
|
|
self.set_blackstyle()
|
|
else:
|
|
self.blackstyle = False
|
|
self.fig = plt.figure(figsize=(10,10))
|
|
self.ax = self.fig.add_subplot(projection='3d')
|
|
|
|
self.lines = []
|
|
for i,body in enumerate(self.dyn_syst.bodylist):
|
|
x, y, z = body.q
|
|
lines, = self.ax.plot([x],[y],[z],'o',color="C{0:d}".format(i),label="{0:s}".format(str(body)))
|
|
self.lines.append(lines)
|
|
self.lines = np.array(self.lines)
|
|
#Autoscale on unknown axis and known lims on the other
|
|
self.ax.set_autoscaley_on(True)
|
|
self.set_lims()
|
|
#Other stuff
|
|
self.ax.grid()
|
|
if self.blackstyle:
|
|
self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2)
|
|
self.ax.set_xlabel('AU', color='w')
|
|
self.ax.set_ylabel('AU', color='w')
|
|
self.ax.set_zlabel('AU', color='w')
|
|
else:
|
|
self.ax.legend()
|
|
self.ax.set_xlabel('AU')
|
|
self.ax.set_ylabel('AU')
|
|
self.ax.set_zlabel('AU')
|
|
|
|
def on_running(self, dyn_syst, step=None, label=None):
|
|
xdata, ydata, zdata = dyn_syst.get_positions
|
|
values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1))/au
|
|
self.min_x, self.max_x = -np.max([np.abs(values).max(),self.max_x]), np.max([np.abs(values).max(),self.max_x])
|
|
self.set_lims()
|
|
#Update data (with the new _and_ the old points)
|
|
for i,body in enumerate(dyn_syst.bodylist):
|
|
x, y, z = body.q/au
|
|
self.lines[i].set_data_3d([x], [y], [z])
|
|
if not label is None:
|
|
if self.blackstyle:
|
|
self.ax.set_title(label,color='w')
|
|
else:
|
|
self.ax.set_title(label)
|
|
|
|
#Need both of these in order to rescale
|
|
self.ax.relim()
|
|
self.ax.autoscale_view()
|
|
#We need to draw *and* flush
|
|
self.fig.canvas.draw()
|
|
self.fig.canvas.flush_events()
|
|
if not step is None and step%100==0:
|
|
self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight")
|
|
|
|
def close(self):
|
|
plt.close()
|
|
|
|
|
|
def display_parameters(E,L,sma,ecc,parameters,savename=""):
|
|
"""
|
|
"""
|
|
if savename != "":
|
|
savename += "_"
|
|
duration, step, dyn_syst, integrator = parameters
|
|
bodies = ""
|
|
for body in dyn_syst.bodylist:
|
|
bodies += str(body)+" ; "
|
|
title1, title2 = "Relative difference of the {0:s} ","for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration)
|
|
|
|
fig1 = plt.figure(figsize=(15,7))
|
|
ax1 = fig1.add_subplot(111)
|
|
for i in range(len(E)):
|
|
ax1.plot(np.arange(E[i].shape[0])*step[i], np.abs((E[i]-E[i][0])/E[i][0]), label="step of {0:.2e}yr".format(step[i]))
|
|
ax1.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
|
|
ax1.legend()
|
|
fig1.suptitle(title1.format("mechanical energy")+title2)
|
|
fig1.savefig("plots/{0:s}dEm.png".format(savename),bbox_inches="tight")
|
|
|
|
fig2 = plt.figure(figsize=(15,7))
|
|
ax2 = fig2.add_subplot(111)
|
|
for i in range(len(L)):
|
|
dL = ((L[i]-L[i][0])/L[i][0])
|
|
dL[np.isnan(dL)] = 0.
|
|
ax2.plot(np.arange(L[i].shape[0])*step[i], np.abs(np.sum(dL,axis=1)), label="step of {0:.2e}yr".format(step[i]))
|
|
ax2.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log')
|
|
ax2.legend()
|
|
fig2.suptitle(title1.format("kinetic moment")+title2)
|
|
fig2.savefig("plots/{0:s}dL2.png".format(savename),bbox_inches="tight")
|
|
|
|
fig3 = plt.figure(figsize=(15,7))
|
|
ax3 = fig3.add_subplot(111)
|
|
ax3.plot(np.arange(sma.shape[0])*step[i], sma, label="a (semi major axis)")
|
|
ax3.plot(np.arange(ecc.shape[0])*step[i], ecc, label="e (eccentricity)")
|
|
ax3.set(xlabel=r"$t \, [yr]$", ylabel=r"$a \, [au] \, or \, e$")
|
|
ax3.legend()
|
|
fig3.suptitle("Semi major axis and eccentricity "+title2)
|
|
fig3.savefig("plots/{0:s}a_e.png".format(savename),bbox_inches="tight")
|
|
|
|
plt.show(block=True)
|
|
|