1
0
Files
KozaiLidov/lib/plots.py
2022-01-14 13:15:18 +01:00

216 lines
8.6 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
"""
Implementation of the plotting and visualization functions.
"""
import numpy as np
import time
import matplotlib.pyplot as plt
from lib.units import *
class DynamicUpdate():
"""
Class for dynamic display of the integrated system.
Initialise with the System of Bodies that will be integrated.
Launch the display, then call on_running method the update it.
-----
dyn_syst = System(bodylist)
d = DynamicUpdate(dyn_syst)
[Start integration procedure]
#Init
d.launch()
[in intgration loop]
#integration
for step in range(duration):
#update attributes of dyn_syst
d.on_running(step=step, label="will be displayed on current update")
[when integration reach end]
d.close()
-----
Additionnal parameters:
launch(blackstyle): boolean
If the display should have black background.
Default to True.
launch(lim_factor): float
Limits of the 3D display are dynamically updated to max_value*lim_factor.
Should always be >1. to have all bodies in the display.
Default to 1.5
"""
#Suppose we know the x range
min_x = -1
max_x = 1
plt.ion()
def __init__(self, dyn_syst):
self.dyn_syst = dyn_syst
def set_lims(self, factor=1.5):
self.ax.set_xlim(factor*self.min_x, factor*self.max_x)
self.ax.set_ylim(factor*self.min_x, factor*self.max_x)
self.ax.set_zlim(factor*self.min_x, factor*self.max_x)
def set_blackstyle(self):
self.fig = plt.figure(figsize=(10,10), facecolor='k')
self.ax = self.fig.add_subplot(projection='3d')
self.ax.set_facecolor('k')
self.ax.xaxis.label.set_color('w')
self.ax.yaxis.label.set_color('w')
self.ax.zaxis.label.set_color('w')
self.ax.tick_params(axis='x',colors='w')
self.ax.tick_params(axis='y',colors='w')
self.ax.tick_params(axis='z',colors='w')
self.ax.w_xaxis.line.set_color('w')
self.ax.w_yaxis.line.set_color('w')
self.ax.w_zaxis.line.set_color('w')
self.ax.w_xaxis.set_pane_color((0,0,0,0))
self.ax.w_yaxis.set_pane_color((0,0,0,0))
self.ax.w_zaxis.set_pane_color((0,0,0,0))
def launch(self, blackstyle=True, lim_factor=1.5):
#Set up plot
if blackstyle:
self.blackstyle = True
self.set_blackstyle()
else:
self.blackstyle = False
self.fig = plt.figure(figsize=(10,10))
self.ax = self.fig.add_subplot(projection='3d')
self.lim_factor = 1.5
self.lines = []
for i,body in enumerate(self.dyn_syst.bodylist):
x, y, z = body.q/au-self.dyn_syst.COM/au
lines, = self.ax.plot([x],[y],[z],'o',color="C{0:d}".format(i),label="{0:s}".format(str(body)))
self.lines.append(lines)
self.lines = np.array(self.lines)
#Autoscale on unknown axis and known lims on the other
self.ax.set_autoscaley_on(True)
self.set_lims(factor=self.lim_factor)
#Other stuff
self.ax.grid()
if self.blackstyle:
self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2)
self.ax.set_xlabel('AU', color='w')
self.ax.set_ylabel('AU', color='w')
self.ax.set_zlabel('AU', color='w')
else:
self.ax.legend()
self.ax.set_xlabel('AU')
self.ax.set_ylabel('AU')
self.ax.set_zlabel('AU')
def on_running(self, step=None, label=None):
xdata, ydata, zdata = self.dyn_syst.get_positionsCOM()
values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1))/au
self.min_x, self.max_x = -np.max([np.abs(values).max(),self.max_x]), np.max([np.abs(values).max(),self.max_x])
self.set_lims(factor=self.lim_factor)
#Update data (with the new _and_ the old points)
for i,body in enumerate(self.dyn_syst.bodylist):
x, y, z = body.q/au
self.lines[i].set_data_3d([x], [y], [z])
if not label is None:
if self.blackstyle:
self.ax.set_title(label,color='w')
else:
self.ax.set_title(label)
#Need both of these in order to rescale
self.ax.relim()
self.ax.autoscale_view()
#We need to draw *and* flush
self.fig.canvas.draw()
self.fig.canvas.flush_events()
if not step is None and step%50==0:
self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight")
def close(self):
plt.close()
def display_parameters(E,L,sma,ecc,phi,parameters,savename="",display_param=True):
"""
Save integrated parameters plots to multiple png files.
-----
Inputs:
E, L, sma, ecc, phi : list of np.ndarray
list of integrated parameters value computed for each step length in
parameters[step] list.
parameters : list
list of simulation parameters : duration, steps, system, integrator.
savename : str
default savename that will be prepend to each saved file path.
Default to empty string.
display_param : boolean
Set to True if the user wants to display the plots before saving,
False otherwise. Default to True.
"""
if savename != "":
savename += "_"
duration, step, dyn_syst, integrator = parameters
bodies = ""
for body in dyn_syst.bodylist:
bodies += str(body)+" ; "
title1, title2 = "Relative difference of the {0:s} ","for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years ".format(bodies, integrator, duration/yr)
fig1 = plt.figure(figsize=(15,7))
ax1 = fig1.add_subplot(111)
for i in range(len(E)):
ax1.plot(np.arange(E[i].shape[0]-1)*step[i]/yr, np.abs((E[i][1:]-E[i][0])/E[i][0]), label="step of {0:.2e}s".format(step[i]))
ax1.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
ax1.legend()
fig1.suptitle(title1.format("mechanical energy")+title2)
fig1.savefig("plots/{0:s}dEm.png".format(savename),bbox_inches="tight")
fig2 = plt.figure(figsize=(15,7))
ax2 = fig2.add_subplot(111)
for i in range(len(L)):
dL = ((L[i]-L[i][0])/L[i][0])
dL[np.isnan(dL)] = 0.
ax2.plot(np.arange(L[i].shape[0]-1)*step[i]/yr, np.abs(np.sum(dL[1:],axis=1)), label="step of {0:.2e}s".format(step[i]))
ax2.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log')
ax2.legend()
fig2.suptitle(title1.format("kinetic moment")+title2)
fig2.savefig("plots/{0:s}dL2.png".format(savename),bbox_inches="tight")
fig3 = plt.figure(figsize=(15,7))
ax3 = fig3.add_subplot(111)
for i in range(len(E)):
ax3.plot(np.arange(E[i].shape[0])*step[-1]/yr, E[i], label="step of {0:.2e}s".format(step[i]))
ax3.set(xlabel=r"$t \, [yr]$", ylabel=r"$E \, [J]$")
ax3.legend()
fig3.suptitle("Mechanical energy of the whole system "+title2)
fig3.savefig("plots/{0:s}E.png".format(savename),bbox_inches="tight")
fig4 = plt.figure(figsize=(15,7))
ax4 = fig4.add_subplot(111)
for i in range(len(L)):
L2 = np.array([np.linalg.norm(Li)**2 for Li in L[i]])
ax4.plot(np.arange(L[i].shape[0])*step[i]/yr, L2, label=r"$L^2$ for step of {0:.2e}s".format(step[i]))
ax4.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\vec{L}\right|^2 \, [kg^2 \cdot m^4 \cdot s^{-2}]$",yscale='log')
ax4.legend()
fig4.suptitle("Squared norm of the kinetic moment of the whole system "+title2)
fig4.savefig("plots/{0:s}L.png".format(savename),bbox_inches="tight")
fig5 = plt.figure(figsize=(15,7))
ax5 = fig5.add_subplot(111)
ax5.plot(np.arange(sma[-1].shape[0])*step[-1]/yr, sma[-1]/au, label="a (step of {0:.2e}s)".format(step[-1]))
ax5.plot(np.arange(ecc[-1].shape[0])*step[-1]/yr, ecc[-1], label="e (step of {0:.2e}s)".format(step[-1]))
ax5.set(xlabel=r"$t \, [yr]$", ylabel=r"$a \, [au] \, or \, e$")
ax5.legend()
fig5.suptitle("Semi major axis and eccentricity "+title2)
fig5.savefig("plots/{0:s}a_e.png".format(savename),bbox_inches="tight")
fig6 = plt.figure(figsize=(15,7))
ax6 = fig6.add_subplot(111)
for i in range(len(phi)):
ax6.plot(np.arange(phi[i].shape[0])*step[-1]/yr, phi[i], label="step of {0:.2e}s".format(step[i]))
ax6.set(xlabel=r"$t \, [yr]$", ylabel=r"$\phi \, [^{\circ}]$")
ax6.legend()
fig6.suptitle("Inclination angle of the perturbator's orbital plane "+title2)
fig6.savefig("plots/{0:s}phi.png".format(savename),bbox_inches="tight")
if display_param:
plt.show(block=True)