1
0
Files
KozaiLidov/lib/integrator.py
Thibault Barnouin 87108df552 debugg integrator
2021-10-15 18:42:43 +02:00

37 lines
1.3 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
"""
Implementation of the various integrators for numerical integration.
Comes from the assumption that the problem is analytically defined in position-momentum (q-p) space for a given hamiltonian H.
"""
import numpy as np
def dp_dt(m_array, q_array):
"""
Time derivative of the momentum, given by the position derivative of the Hamiltonian.
dp/dt = -dH/dq
"""
dp_array = np.zeros(q_array.shape)
for i in range(q_array.shape[0]):
m_j = np.delete(m_array, i)
q_j = np.delete(q_array, i, 0)
dp_array = m_array[i]*np.sum((m_j/np.sum((q_j-q_array[i])**3, axis=1)).reshape((q_j.shape[0],1))*(q_j-q_array[i]), axis=0)
return dp_array
def frogleap(duration, step, m_array, q_array, p_array):
"""
Leapfrog integrator for first order partial differential equations.
iteration : half-step drift -> full-step kick -> half-step drift
"""
N = np.ceil(duration/step).astype(int)
for _ in range(N):
# half-step drift
q_array, p_array = q_array + step/2*p_array/m_array , p_array
# full-step kick
q_array, p_array = q_array , p_array - step*dp_dt(m_array, q_array)
# half-step drift
q_array, p_array = q_array + step/2*p_array/m_array , p_array
return q_array, p_array