1
0
Files
KozaiLidov/main.py
2021-11-18 20:10:14 +01:00

57 lines
2.0 KiB
Python
Executable File

#!/usr/bin/python
# -*- coding:utf-8 -*-
from sys import exit as sysexit
import numpy as np
import matplotlib.pyplot as plt
from lib.objects import Body, System
from lib.plots import display_parameters
from lib.units import *
def main():
#initialisation
m = np.array([1., 1., 1e-5])*Ms # Masses in Solar mass
a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units
e = np.array([0., 0., 1./4.]) # Eccentricity
psi = np.array([0., 0., 0.])*np.pi/180. # Inclination of the orbital plane in degrees
x1 = np.array([0., -1., 0.])*a[0]
x2 = np.array([0., 1., 0.])*a[1]
x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])])*a[2]
q = np.array([x1, x2, x3])
v1 = np.array([np.sqrt(G*m[1]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
v2 = np.array([-np.sqrt(G*m[0]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.])
v3 = np.array([0., np.sqrt(G*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.])
v = np.array([v1, v2, v3])
#integration parameters
duration, step = 100*yr, np.array([1./(365.25*2.), 1./365.25])*yr #integration time and step in years
integrator = "leapfrog"
n_bodies = 2
display = False
savename = "{0:d}bodies_{1:s}".format(n_bodies, integrator)
#simulation start
bodylist = []
for i in range(n_bodies):
bodylist.append(Body(m[i], q[i], v[i]))
dyn_syst = System(bodylist)
dyn_syst.COMShift()
E, L = [], []
for step0 in step:
if integrator.lower() in ['leapfrog', 'frogleap', 'frog']:
E0, L0 = dyn_syst.leapfrog(duration, step0, recover_param=True, display=display, savename=savename)
elif integrator.lower() in ['hermite','herm']:
E0, L0 = dyn_syst.hermite(duration, step0, recover_param=True, display=display, savename=savename)
E.append(E0)
L.append(L0)
parameters = [duration, step, dyn_syst, integrator]
display_parameters(E, L, parameters=parameters, savename=savename)
return 0
if __name__ == '__main__':
sysexit(main())