232 lines
9.0 KiB
Python
Executable File
232 lines
9.0 KiB
Python
Executable File
#!/usr/bin/python
|
|
# -*- coding:utf-8 -*-
|
|
"""
|
|
Implementation of the plotting and visualization functions.
|
|
"""
|
|
import numpy as np
|
|
import time
|
|
import matplotlib.pyplot as plt
|
|
from lib.units import *
|
|
|
|
|
|
class DynamicUpdate():
|
|
"""
|
|
Class for dynamic display of the integrated system.
|
|
Initialise with the System of Bodies that will be integrated.
|
|
Launch the display, then call on_running method the update it.
|
|
-----
|
|
dyn_syst = System(bodylist)
|
|
d = DynamicUpdate(dyn_syst)
|
|
[Start integration procedure]
|
|
#Init
|
|
d.launch()
|
|
[in intgration loop]
|
|
#integration
|
|
for step in range(duration):
|
|
#update attributes of dyn_syst
|
|
d.on_running(step=step, label="will be displayed on current update")
|
|
[when integration reach end]
|
|
d.close()
|
|
-----
|
|
Additionnal parameters:
|
|
launch(blackstyle): boolean
|
|
If the display should have black background.
|
|
Default to True.
|
|
launch(lim_factor): float
|
|
Limits of the 3D display are dynamically updated to max_value*lim_factor.
|
|
Should always be >1. to have all bodies in the display.
|
|
Default to 1.5
|
|
"""
|
|
#Suppose we know the x range
|
|
min_x = -1
|
|
max_x = 1
|
|
|
|
plt.ion()
|
|
|
|
def __init__(self, dyn_syst):
|
|
self.dyn_syst = dyn_syst
|
|
|
|
def set_lims(self, factor=1.5):
|
|
self.ax.set_xlim(factor*self.min_x, factor*self.max_x)
|
|
self.ax.set_ylim(factor*self.min_x, factor*self.max_x)
|
|
self.ax.set_zlim(factor*self.min_x, factor*self.max_x)
|
|
|
|
def set_blackstyle(self):
|
|
self.fig = plt.figure(figsize=(10,10), facecolor='k')
|
|
self.ax = self.fig.add_subplot(projection='3d')
|
|
self.ax.set_facecolor('k')
|
|
self.ax.xaxis.label.set_color('w')
|
|
self.ax.yaxis.label.set_color('w')
|
|
self.ax.zaxis.label.set_color('w')
|
|
self.ax.tick_params(axis='x',colors='w')
|
|
self.ax.tick_params(axis='y',colors='w')
|
|
self.ax.tick_params(axis='z',colors='w')
|
|
self.ax.w_xaxis.line.set_color('w')
|
|
self.ax.w_yaxis.line.set_color('w')
|
|
self.ax.w_zaxis.line.set_color('w')
|
|
self.ax.w_xaxis.set_pane_color((0,0,0,0))
|
|
self.ax.w_yaxis.set_pane_color((0,0,0,0))
|
|
self.ax.w_zaxis.set_pane_color((0,0,0,0))
|
|
|
|
def launch(self, blackstyle=True, lim_factor=1.5):
|
|
#Set up plot
|
|
if blackstyle:
|
|
self.blackstyle = True
|
|
self.set_blackstyle()
|
|
else:
|
|
self.blackstyle = False
|
|
self.fig = plt.figure(figsize=(10,10))
|
|
self.ax = self.fig.add_subplot(projection='3d')
|
|
self.lim_factor = 1.5
|
|
|
|
self.lines = []
|
|
for i,body in enumerate(self.dyn_syst.bodylist):
|
|
x, y, z = body.q/au-self.dyn_syst.COM/au
|
|
lines, = self.ax.plot([x],[y],[z],'o',color="C{0:d}".format(i),
|
|
label="{0:s}".format(str(body)))
|
|
self.lines.append(lines)
|
|
self.lines = np.array(self.lines)
|
|
#Autoscale on unknown axis and known lims on the other
|
|
self.ax.set_autoscaley_on(True)
|
|
self.set_lims(factor=self.lim_factor)
|
|
#Other stuff
|
|
self.ax.grid()
|
|
if self.blackstyle:
|
|
self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2)
|
|
self.ax.set_xlabel('AU', color='w')
|
|
self.ax.set_ylabel('AU', color='w')
|
|
self.ax.set_zlabel('AU', color='w')
|
|
else:
|
|
self.ax.legend()
|
|
self.ax.set_xlabel('AU')
|
|
self.ax.set_ylabel('AU')
|
|
self.ax.set_zlabel('AU')
|
|
|
|
def on_running(self, step=None, label=None):
|
|
xdata, ydata, zdata = self.dyn_syst.get_positionsCOM()
|
|
values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1))/au
|
|
self.min_x = -np.max([np.abs(values).max(),self.max_x])
|
|
self.max_x = np.max([np.abs(values).max(),self.max_x])
|
|
self.set_lims(factor=self.lim_factor)
|
|
#Update data (with the new _and_ the old points)
|
|
for i,body in enumerate(self.dyn_syst.bodylist):
|
|
x, y, z = body.q/au
|
|
self.lines[i].set_data_3d([x], [y], [z])
|
|
if not label is None:
|
|
if self.blackstyle:
|
|
self.ax.set_title(label,color='w')
|
|
else:
|
|
self.ax.set_title(label)
|
|
|
|
#Need both of these in order to rescale
|
|
self.ax.relim()
|
|
self.ax.autoscale_view()
|
|
#We need to draw *and* flush
|
|
self.fig.canvas.draw()
|
|
self.fig.canvas.flush_events()
|
|
if not step is None and step%50==0:
|
|
self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight")
|
|
|
|
def close(self):
|
|
plt.close()
|
|
|
|
|
|
def display_parameters(E,L,sma,ecc,phi,parameters,savename="",display_param=True):
|
|
"""
|
|
Save integrated parameters plots to multiple png files.
|
|
-----
|
|
Inputs:
|
|
E, L, sma, ecc, phi: list of np.ndarray
|
|
list of integrated parameters value computed for each step length in
|
|
parameters[step] list.
|
|
parameters : list
|
|
list of simulation parameters : duration, steps, system, integrator,
|
|
and initialisation parameters.
|
|
savename : str
|
|
default savename that will be prepend to each saved file path.
|
|
Default to empty string.
|
|
display_param : boolean
|
|
Set to True if the user wants to display the plots before saving,
|
|
False otherwise. Default to True.
|
|
"""
|
|
if savename != "":
|
|
savename += "_"
|
|
duration, step, dyn_syst, integrator, init = parameters
|
|
a, e, psi = init
|
|
bodies = ""
|
|
init_str = ""
|
|
for i, body in enumerate(dyn_syst.bodylist):
|
|
bodies += str(body)+" ; "
|
|
init_str += r"a{0:d} = {1:.2f} au, e{0:d} = {2:.2f}, $\psi${0:d} = {3:.2f}° ; ".format(i+1,a[i]/au,e[i],psi[i]*180./np.pi)
|
|
title1 = "Relative difference of the {0:s} "
|
|
title2 = "for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years with initial parameters\n {3:s}".format(bodies, integrator, duration/yr, init_str)
|
|
|
|
fig1 = plt.figure(figsize=(15,7))
|
|
ax1 = fig1.add_subplot(111)
|
|
for i in range(len(E)):
|
|
ax1.plot(np.arange(E[i].shape[0]-1)*step[i]/yr,
|
|
np.abs((E[i][1:]-E[i][0])/E[i][0]),
|
|
label="step of {0:.2e}s".format(step[i]))
|
|
ax1.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log')
|
|
ax1.legend()
|
|
fig1.suptitle(title1.format("mechanical energy")+title2)
|
|
fig1.savefig("plots/{0:s}dEm.png".format(savename),bbox_inches="tight")
|
|
|
|
fig2 = plt.figure(figsize=(15,7))
|
|
ax2 = fig2.add_subplot(111)
|
|
for i in range(len(L)):
|
|
dL = ((L[i]-L[i][0])/L[i][0])
|
|
dL[np.isnan(dL)] = 0.
|
|
ax2.plot(np.arange(L[i].shape[0]-1)*step[i]/yr,
|
|
np.abs(np.sum(dL[1:],axis=1)),
|
|
label="step of {0:.2e}s".format(step[i]))
|
|
ax2.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$")
|
|
ax2.legend()
|
|
fig2.suptitle(title1.format("kinetic moment")+title2)
|
|
fig2.savefig("plots/{0:s}dL2.png".format(savename),bbox_inches="tight")
|
|
|
|
fig3 = plt.figure(figsize=(15,7))
|
|
ax3 = fig3.add_subplot(111)
|
|
for i in range(len(E)):
|
|
ax3.plot(np.arange(E[i].shape[0])*step[-1]/yr, E[i],
|
|
label="step of {0:.2e}s".format(step[i]))
|
|
ax3.set(xlabel=r"$t \, [yr]$", ylabel=r"$E \, [J]$")
|
|
ax3.legend()
|
|
fig3.suptitle("Mechanical energy of the whole system "+title2)
|
|
fig3.savefig("plots/{0:s}E.png".format(savename),bbox_inches="tight")
|
|
|
|
fig4 = plt.figure(figsize=(15,7))
|
|
ax4 = fig4.add_subplot(111)
|
|
for i in range(len(L)):
|
|
L2 = np.array([np.linalg.norm(Li)**2 for Li in L[i]])
|
|
ax4.plot(np.arange(L[i].shape[0])*step[i]/yr, L2,
|
|
label=r"$L^2$ for step of {0:.2e}s".format(step[i]))
|
|
ax4.set(xlabel=r"$t \, [yr]$", ylabel=r"$\left|\vec{L}\right|^2 \, [kg^2 \cdot m^4 \cdot s^{-2}]$")
|
|
ax4.legend()
|
|
fig4.suptitle("Squared norm of the kinetic moment of the whole system "+title2)
|
|
fig4.savefig("plots/{0:s}L.png".format(savename),bbox_inches="tight")
|
|
|
|
fig5 = plt.figure(figsize=(15,7))
|
|
ax5 = fig5.add_subplot(111)
|
|
ax5.plot(np.arange(sma[-1].shape[0])*step[-1]/yr, sma[-1]/au,
|
|
label="a (step of {0:.2e}s)".format(step[-1]))
|
|
ax5.plot(np.arange(ecc[-1].shape[0])*step[-1]/yr, ecc[-1],
|
|
label="e (step of {0:.2e}s)".format(step[-1]))
|
|
ax5.set(xlabel=r"$t \, [yr]$", ylabel=r"$a \, [au] \, or \, e$")
|
|
ax5.legend()
|
|
fig5.suptitle("Semi major axis and eccentricity "+title2)
|
|
fig5.savefig("plots/{0:s}a_e.png".format(savename),bbox_inches="tight")
|
|
|
|
fig6 = plt.figure(figsize=(15,7))
|
|
ax6 = fig6.add_subplot(111)
|
|
for i in range(len(phi)):
|
|
ax6.plot(np.arange(phi[i].shape[0])*step[-1]/yr, phi[i],
|
|
label="step of {0:.2e}s".format(step[i]))
|
|
ax6.set(xlabel=r"$t \, [yr]$", ylabel=r"$\phi \, [^{\circ}]$")
|
|
ax6.legend()
|
|
fig6.suptitle("Inclination angle of the perturbator's orbital plane "+title2)
|
|
fig6.savefig("plots/{0:s}phi.png".format(savename),bbox_inches="tight")
|
|
|
|
if display_param:
|
|
plt.show(block=True)
|
|
|