#!/usr/bin/python # -*- coding:utf-8 -*- from sys import exit as sysexit import numpy as np import matplotlib.pyplot as plt from lib.integrator import frogleap from lib.objects import Body, System globals()['G'] = 6.67e-11 #Gravitational constant in SI units globals()['Ms'] = 2e30 #Solar mass in kg globals()['au'] = 1.5e11 #Astronomical unit in m def main(): #initialisation m = np.array([1, 1, 0.1])*Ms # Masses in Solar mass mu = m[0]*m[1]/(m[0]+m[1]) a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units psi = np.array([0., 0., 80.])*np.pi/180. # Inclination of the orbital plane in degrees x1 = np.array([-1., 0., 0.])*a[0] x2 = np.array([1., 0., 0.])*a[1] x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])])*a[2] q = np.array([x1, x2, x3]) v1 = np.array([0., -np.sqrt(G*mu/np.sqrt(np.sum(x1**2))), 0]) v2 = np.array([0., np.sqrt(G*mu/np.sqrt(np.sum(x2**2))), 0.]) v3 = np.array([0., np.sqrt(G*(m[0]+m[1])*(2./np.sqrt(np.sum(x3**2))-1./a[2])), 0.]) v = np.array([v1, v2, v3]) bodylist = [] for i in range(m.shape[0]): bodylist.append(Body(m[i], q[i], v[i])) dyn_syst = System(bodylist) dyn_syst.COMShift() duration, step = 0.5*3e7, 1e1 E, L = frogleap(duration, step, dyn_syst, recover_param=True)#, display=True) fig1 = plt.figure(figsize=(30,15)) ax1 = fig1.add_subplot(111) ax1.plot(np.arange(E.shape[0])/duration, E, label=r"$E_m$") ax1.legend() fig1.savefig("plots/Em.png",bbox_inches="tight") fig2 = plt.figure(figsize=(30,15)) ax2 = fig2.add_subplot(111) ax2.plot(np.arange(L.shape[0])/duration, np.sum(L**2,axis=1), label=r"$L^2$") ax2.legend() fig2.savefig("plots/L2.png",bbox_inches="tight") plt.show(block=True) return 0 if __name__ == '__main__': sysexit(main())