#!/usr/bin/python # -*- coding:utf-8 -*- """ Implementation of the various integrators for numerical integration. Comes from the assumption that the problem is analytically defined in position-momentum (q-p) space for a given hamiltonian H. """ import numpy as np import time from lib.plots import DynamicUpdate globals()["G"] = 1. #Gravitationnal constant def dp_dt(m_array, q_array): """ Time derivative of the momentum, given by the position derivative of the Hamiltonian. dp/dt = -dH/dq """ dp_array = np.zeros(q_array.shape) for i in range(q_array.shape[0]): q_j = np.delete(q_array, i, 0) m_j = np.delete(m_array, i).reshape((q_j.shape[0],1)) dp_array[i] = -G*m_array[i]*np.sum(m_j/np.sum(np.sqrt(np.sum((q_j-q_array[i])**2, axis=0)))**3*(q_j-q_array[i]), axis=0) dp_array[np.isnan(dp_array)] = 0. return dp_array def frogleap(duration, step, dyn_syst, recover_param=False, display=False): """ Leapfrog integrator for first order partial differential equations. iteration : half-step drift -> full-step kick -> half-step drift """ N = np.ceil(duration/step).astype(int) m_array = dyn_syst.get_masses() q_array = dyn_syst.get_positions() p_array = dyn_syst.get_momenta() if display: d = DynamicUpdate() d.min_x, d.max_x = -1.5*np.abs(q_array).max(), +1.5*np.abs(q_array).max() d.on_launch() for _ in range(N): # half-step drift q_array, p_array = q_array + step/2*p_array/m_array , p_array # full-step kick q_array, p_array = q_array , p_array - step*dp_dt(m_array, q_array) # half-step drift q_array, p_array = q_array + step/2*p_array/m_array , p_array #print(p_array) if display: # In center of mass frame q_cm = np.array([0.,0.])#np.sum(m_array.reshape((q_array.shape[0],1))*q_array, axis=0)/m_array.sum() # display progression d.on_running(q_array[:,0]-q_cm[0], q_array[:,1]-q_cm[1]) time.sleep(0.01) for i, body in enumerate(dyn_syst.bodylist): body.q = q_array[i] body.p = p_array[i] if body.m != 0.: body.v = body.p/body.m if recover_param: return dyn_syst