#!/usr/bin/python # -*- coding:utf-8 -*- """ Class definition for physical attribute """ from os import system import numpy as np from lib.plots import DynamicUpdate from lib.units import * class Body: def __init__(self, mass, position, velocity): self.m = np.longdouble(mass) self.q = np.longdouble(position) self.v = np.longdouble(velocity) self.qb = np.longdouble(position) self.vb = np.longdouble(velocity) self.a = np.zeros(3,dtype=np.longdouble) self.ap = np.zeros(3,dtype=np.longdouble) self.j = np.zeros(3,dtype=np.longdouble) self.jp = np.zeros(3,dtype=np.longdouble) self.qp = np.zeros(3,dtype=np.longdouble) self.vp = np.zeros(3,dtype=np.longdouble) def __repr__(self): # Called upon "print(body)" return r"Body of mass: {0:.1e} $M_\odot$, position: {1}, velocity: {2}".format(self.m/Ms, self.q, self.v) def __str__(self): # Called upon "str(body)" return r"Body of mass: {0:.1e} $M_\odot$".format(self.m/Ms) @property def p(self): return self.v*self.m @property def pb(self): return self.vb*self.m class System(Body): def __init__(self, bodylist, main = False, blackstyle=True): self.blackstyle = blackstyle #for dark mode in plot self.bodylist = np.array(bodylist) if main == True : self.COMShift() self.time = 0 #lifetime of system self.m = self.M self.q = self.COM self.v = self.COMV self.coordarray = [] def __repr__(self): # Called upon "print(system)" return str([print(body) for body in self.bodylist]) def __str__(self): # Called upon "str(system)" return str([str(body) for body in self.bodylist]) def get_masses(self): #return the masses of each object return np.array([body.m for body in self.bodylist],dtype=np.longdouble) def get_positions(self): #return the positions of the bodies xdata = np.array([body.q[0] for body in self.bodylist],dtype=np.longdouble) ydata = np.array([body.q[1] for body in self.bodylist],dtype=np.longdouble) zdata = np.array([body.q[2] for body in self.bodylist],dtype=np.longdouble) return xdata, ydata, zdata def get_positionsCOM(self): #return the positions of the bodies in the center of mass frame COM = self.COM xdata = np.array([body.q[0]-COM[0] for body in self.bodylist],dtype=np.longdouble) ydata = np.array([body.q[1]-COM[1] for body in self.bodylist],dtype=np.longdouble) zdata = np.array([body.q[2]-COM[2] for body in self.bodylist],dtype=np.longdouble) return xdata, ydata, zdata @property def M(self): #return total system mass mass = np.longdouble(0.) for body in self.bodylist: mass = mass + body.m return mass @property def mu(self): prod = np.longdouble(1.) for body in self.bodylist: prod = prod * body.m mu = prod/self.M return mu @property def COM(self): #return center of mass in cartesian np_array coord = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: coord = coord + body.m*body.q coord = coord/self.M return coord @property def COMV(self): #return center of mass velocity in cartesian np_array coord = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: coord = coord + body.m*body.v coord = coord/self.M return coord def COMShift(self): #Shift coordinates of bodies in system to COM frame and set COM at rest COM = self.COM COMV = self.COMV for body in self.bodylist: body.q = body.q - COM body.v = body.v - COMV def COMShiftBin(self): #Shift coordinates of inner binary system to COM frame and set COM at rest COM = self.COM COMV = self.COMV for body in self.bodylist: body.qb = body.q - COM body.vb = body.v - COMV @property def LBIN(self): #return angular momentum of inner binary self.COMShiftBin() L = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: L = L + np.cross(body.qb,body.pb) return L @property def EBIN(self): #return total energy of inner binary self.COMShiftBin() T = np.longdouble(0.) W = np.longdouble(0.) for body in self.bodylist: T = T + 1./2.*body.m*np.linalg.norm(body.vb)**2 for otherbody in self.bodylist: if body != otherbody: rij = np.linalg.norm(body.qb-otherbody.qb) W = W - G*body.m*otherbody.m/rij E = T + W return E @property def ECOM(self): #return total energy of bodies in system in the center of mass frame T, W = np.longdouble(0.), np.longdouble(0.) COM, COMV = self.COM, self.COMV for body in self.bodylist: T = T + 1./2.*body.m*np.linalg.norm(body.v-COMV)**2 for otherbody in self.bodylist: if body != otherbody: rij = np.linalg.norm(body.q-otherbody.q) W = W - G*otherbody.m*body.m/(2.*rij) E = T + W return E @property def LCOM(self): #return angular momentum of bodies in system L = np.zeros(3,dtype=np.longdouble) COM, COMV = self.COM, self.COMV for body in self.bodylist: L = L + np.cross(body.q-COM,body.p-body.m*COMV) return L @property def E(self): #return total energy of bodies in system T = np.longdouble(0.) W = np.longdouble(0.) for body in self.bodylist: T = T + 1./2.*body.m*np.linalg.norm(body.v)**2 for otherbody in self.bodylist: if body != otherbody: rij = np.linalg.norm(body.q-otherbody.q) W = W - G*otherbody.m*body.m/(2.*rij) E = T + W return E @property def L(self): #return angular momentum of bodies in system in the center of mass frame L = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: L = L + np.cross(body.q,body.p) return L @property def eccCOM(self): #exentricity of two body sub system if len(self.bodylist) == 2 : ecc = (2.*self.ECOM*(np.linalg.norm(self.LCOM)**2))/(G**2*self.M**2*self.mu**3) + 1. else : ecc = np.nan return ecc @property def smaCOM(self): #semi major axis of two body sub system if len(self.bodylist) == 2 : sma = -G*self.mu*self.bodylist[0].m/(2.*self.ECOM) else : sma = np.nan return sma @property def ecc(self): #exentricity of two body sub system if len(self.bodylist) == 2 : ecc = (2.*self.EBIN*(np.linalg.norm(self.LBIN)**2))/(G**2*self.M**2*self.mu**3) + 1. else : ecc = np.nan return ecc @property def sma(self): #semi major axis of two body sub system if len(self.bodylist) == 2 : sma = -G*self.mu*self.bodylist[0].m/(2.*self.EBIN) else : sma = np.nan return sma @property def phi(self): #return angle in degree between plans formed by perturbator plan and reference plan if len(self.bodylist) == 3 : body1 = self.bodylist[0] body2 = self.bodylist[2] n1 = np.cross(body1.q-self.COM, body1.v-self.COMV) n2 = np.cross(body2.q-self.COM, body2.v-self.COMV) n1 = np.array([0., 0., 1.], dtype=np.longdouble) phi = np.arccos(np.dot(n1, n2) / (np.linalg.norm(n1) * np.linalg.norm(n2)))*180./np.pi else : phi = np.nan return phi