#!/usr/bin/python # -*- coding:utf-8 -*- """ Implementation of the plotting and visualization functions. """ import numpy as np import time import matplotlib.pyplot as plt from lib.units import * class DynamicUpdate(): #Suppose we know the x range min_x = -10 max_x = 10 plt.ion() def __init__(self, dyn_syst): self.dyn_syst = dyn_syst def set_lims(self, factor=1.5): self.ax.set_xlim(factor*self.min_x, factor*self.max_x) self.ax.set_ylim(factor*self.min_x, factor*self.max_x) self.ax.set_zlim(factor*self.min_x, factor*self.max_x) def set_blackstyle(self): self.fig = plt.figure(figsize=(10,10), facecolor='k') self.ax = self.fig.add_subplot(projection='3d') self.ax.set_facecolor('k') self.ax.xaxis.label.set_color('w') self.ax.yaxis.label.set_color('w') self.ax.zaxis.label.set_color('w') self.ax.tick_params(axis='x',colors='w') self.ax.tick_params(axis='y',colors='w') self.ax.tick_params(axis='z',colors='w') self.ax.w_xaxis.line.set_color('w') self.ax.w_yaxis.line.set_color('w') self.ax.w_zaxis.line.set_color('w') self.ax.w_xaxis.set_pane_color((0,0,0,0)) self.ax.w_yaxis.set_pane_color((0,0,0,0)) self.ax.w_zaxis.set_pane_color((0,0,0,0)) def launch(self, blackstyle=True): #Set up plot if blackstyle: self.blackstyle = True self.set_blackstyle() else: self.blackstyle = False self.fig = plt.figure(figsize=(10,10)) self.ax = self.fig.add_subplot(projection='3d') self.lines = [] for i,body in enumerate(self.dyn_syst.bodylist): x, y, z = body.q lines, = self.ax.plot([x],[y],[z],'o',color="C{0:d}".format(i),label="{0:s}".format(str(body))) self.lines.append(lines) self.lines = np.array(self.lines) #Autoscale on unknown axis and known lims on the other self.ax.set_autoscaley_on(True) self.set_lims() #Other stuff self.ax.grid() if self.blackstyle: self.ax.legend(labelcolor='w', frameon=True, framealpha=0.2) else: self.ax.legend() def on_running(self, dyn_syst, step=None, label=None): xdata, ydata, zdata = dyn_syst.get_positions() values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1)) self.min_x, self.max_x = -np.max([np.abs(values).max(),self.max_x]), np.max([np.abs(values).max(),self.max_x]) self.set_lims() #Update data (with the new _and_ the old points) for i,body in enumerate(dyn_syst.bodylist): x, y, z = body.q self.lines[i].set_data_3d([x], [y], [z]) if not label is None: if self.blackstyle: self.ax.set_title(label,color='w') else: self.ax.set_title(label) #Need both of these in order to rescale self.ax.relim() self.ax.autoscale_view() #We need to draw *and* flush self.fig.canvas.draw() self.fig.canvas.flush_events() if not step is None and step%1000==0: self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight") def close(self): plt.close() #Example def __call__(self): import numpy as np import time self.on_launch() xdata = [] ydata = [] for x in np.arange(0,10,0.5): xdata.append(x) ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2)) self.on_running(xdata, ydata) time.sleep(1) return xdata, ydata def display_parameters(E,L,parameters,savename=""): """ """ if savename != "": savename += "_" duration, step, dyn_syst, integrator = parameters bodies = "" for body in dyn_syst.bodylist: bodies += str(body)+" ; " title = "Relative difference of the {} "+"for a system composed of {0:s}\n integrated with {1:s} for a duration of {2:.2f} years with a step of {3:.2e} years.".format(bodies, integrator, duration/yr, step/yr) fig1 = plt.figure(figsize=(15,7)) ax1 = fig1.add_subplot(111) ax1.plot(np.arange(E.shape[0])*step/yr, np.abs((E-E[0])/E[0]), label=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$") ax1.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta E_m}{E_m(t=0)}\right|$", yscale='log') ax1.legend() fig1.suptitle(title.format("mechanical energy")) fig1.savefig("plots/{0:s}dEm.png".format(savename),bbox_inches="tight") fig2 = plt.figure(figsize=(15,7)) ax2 = fig2.add_subplot(111) dL = ((L-L[0])/L[0]) dL[np.isnan(dL)] = 0. ax2.plot(np.arange(L.shape[0])*step/yr, np.abs(np.sum(dL,axis=1)), label=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$") ax2.set(xlabel=r"$t (yr)$", ylabel=r"$\left|\frac{\delta \vec{L}}{\vec{L}(t=0)}\right|$",yscale='log') ax2.legend() fig2.suptitle(title.format("kinetic moment")) fig2.savefig("plots/{0:s}dL2.png".format(savename),bbox_inches="tight") plt.show(block=True)