#!/usr/bin/python # -*- coding:utf-8 -*- from sys import exit as sysexit import numpy as np import matplotlib.pyplot as plt from lib.objects import Body, System from lib.plots import display_parameters from lib.units import * def main(): #initialisation m = np.array([1., 1., 1e-5])*Ms # Masses in Solar mass a = np.array([1., 1., 5.])*au # Semi-major axis in astronomical units e = np.array([0., 0., 1./4.]) # Eccentricity psi = np.array([0., 0., 0.])*np.pi/180. # Inclination of the orbital plane in degrees x1 = np.array([0., -1., 0.])*a[0] x2 = np.array([0., 1., 0.])*a[1] x3 = np.array([np.cos(psi[2]), 0., np.sin(psi[2])])*a[2] q = np.array([x1, x2, x3]) v1 = np.array([np.sqrt(G*m[1]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.]) v2 = np.array([-np.sqrt(G*m[0]**2/((m[0]+m[1])*np.sqrt(np.sum((q[0]-q[1])**2)))), 0., 0.]) v3 = np.array([0., np.sqrt(G*(m[0]+m[1])*(2./np.sqrt(np.sum(q[2]**2))-1./a[2])), 0.]) v = np.array([v1, v2, v3]) #integration parameters duration, step = 100*yr, [1e4, 1e5] integrator = "leapfrog" n_bodies = 2 display = False savename = "{0:d}bodies_{1:s}".format(n_bodies, integrator) #simulation start bodylist = [] for i in range(n_bodies): bodylist.append(Body(m[i], q[i], v[i])) dyn_syst = System(bodylist) dyn_syst.COMShift() E, L = [], [] for step0 in step: if integrator.lower() in ['leapfrog', 'frogleap', 'frog']: E0, L0 = dyn_syst.leapfrog(duration, step0, recover_param=True, display=display, savename=savename) elif integrator.lower() in ['hermite','herm']: E0, L0 = dyn_syst.hermite(duration, step0, recover_param=True, display=display, savename=savename) E.append(E0) L.append(L0) parameters = [duration, step, dyn_syst, integrator] display_parameters(E, L, parameters=parameters, savename=savename) return 0 if __name__ == '__main__': sysexit(main())