#!/usr/bin/python # -*- coding:utf-8 -*- """ Implementation of the various integrators for numerical integration. Comes from the assumption that the problem is analytically defined in position-momentum (q-p) space for a given hamiltonian H. """ from os import system import numpy as np from lib.plots import DynamicUpdate globals()['G'] = 6.67e-11 #Gravitational constant in SI units globals()['Ms'] = 2e30 #Solar mass in kg globals()['au'] = 1.5e11 #Astronomical unit in m def dv_dt(m_array, q_array): """ Time derivative of the velocity, given by the position derivative of the Hamiltonian. dv/dt = -1/m*dH/dq """ dv_array = np.zeros(q_array.shape) for i in range(q_array.shape[0]): q_j = np.delete(q_array, i, 0) m_j = np.delete(m_array, i, 0) dv_array[i] = -G*np.sum((m_j*(q_j-q_array[i])).T/np.sqrt(np.sum((q_j-q_array[i])**2, axis=1))**3, axis=1).T dv_array[np.isnan(dv_array)] = 0. return dv_array def frogleap(duration, step, dyn_syst, recover_param=False, display=False): """ Leapfrog integrator for first order partial differential equations. iteration : half-step drift -> full-step kick -> half-step drift """ N = np.ceil(duration/step).astype(int) q_array = dyn_syst.get_positions() v_array = dyn_syst.get_velocities() masses = dyn_syst.get_masses() m_array = np.ones(q_array.shape) for i in range(q_array.shape[0]): m_array[i,:] = masses[i] E = np.zeros(N) L = np.zeros((N,3)) if display: try: system("mkdir tmp") except IOError: system("rm tmp/*") d = DynamicUpdate() d.on_launch() for j in range(N): # half-step drift q_array, v_array = q_array + step/2*v_array , v_array # full-step kick q_array, v_array = q_array , v_array - step*dv_dt(m_array, q_array) # half-step drift q_array, v_array = q_array + step/2*v_array , v_array for i, body in enumerate(dyn_syst.bodylist): body.q = q_array[i] body.v = v_array[i] body.p = body.v*body.m dyn_syst.COMShift() E[j] = dyn_syst.Eval() L[j] = dyn_syst.Lval() if display: # display progression if len(dyn_syst.bodylist) == 1: d.on_running(q_array[0], q_array[1], q_array[2], step=j, label="step {0:d}/{1:d}".format(j,N)) else: d.on_running(q_array[:,0], q_array[:,1], q_array[:,2], step=j, label="step {0:d}/{1:d}".format(j,N)) if display: system("convert -delay 5 -loop 0 tmp/?????.png tmp/temp.gif && rm tmp/?????.png") system("convert tmp/temp.gif -fuzz 30% -layers Optimize plots/dynsyst.gif && rm tmp/temp.gif") if recover_param: return E, L