#!/usr/bin/python # -*- coding:utf-8 -*- """ Class definition for physical attribute """ from os import system import numpy as np from astropy.coordinates import Angle from astropy import units as u from lib.plots import DynamicUpdate from lib.units import * class Body: def __init__(self, mass, position, velocity): self.m = mass self.q = position self.v = velocity self.qb = position self.vb = velocity self.a = np.zeros(3,dtype=np.longdouble) self.ap = np.zeros(3,dtype=np.longdouble) self.j = np.zeros(3,dtype=np.longdouble) self.jp = np.zeros(3,dtype=np.longdouble) self.qp = np.zeros(3,dtype=np.longdouble) self.vp = np.zeros(3,dtype=np.longdouble) def __repr__(self): # Called upon "print(body)" return r"Body of mass: {0:.1e} $M_\odot$, position: {1}, velocity: {2}".format(self.m/Ms, self.q, self.v) def __str__(self): # Called upon "str(body)" return r"Body of mass: {0:.1e} $M_\odot$".format(self.m/Ms) @property def p(self): return self.v*self.m @property def pb(self): return self.vb*self.m class System(Body): def __init__(self, bodylist, main = False, blackstyle=True): self.blackstyle = blackstyle #for dark mode in plot self.bodylist = np.array(bodylist) if main == True : self.COMShift() self.time = 0 #lifetime of system self.m = self.M self.q = self.COM self.v = self.COMV self.coordarray = [] def __repr__(self): # Called upon "print(system)" return str([print(body) for body in self.bodylist]) def __str__(self): # Called upon "str(system)" return str([str(body) for body in self.bodylist]) def get_masses(self): #return the masses of each object return np.array([body.m for body in self.bodylist],dtype=np.longdouble) def get_positions(self): #return the positions of the bodies xdata = np.array([body.q[0] for body in self.bodylist],dtype=np.longdouble) ydata = np.array([body.q[1] for body in self.bodylist],dtype=np.longdouble) zdata = np.array([body.q[2] for body in self.bodylist],dtype=np.longdouble) return xdata, ydata, zdata def get_velocities(self): #return the positions of the bodies vxdata = np.array([body.v[0] for body in self.bodylist],dtype=np.longdouble) vydata = np.array([body.v[1] for body in self.bodylist],dtype=np.longdouble) vzdata = np.array([body.v[2] for body in self.bodylist],dtype=np.longdouble) return vxdata, vydata, vzdata def get_momenta(self): #return the momenta of the bodies pxdata = np.array([body.p[0] for body in self.bodylist],dtype=np.longdouble) pydata = np.array([body.p[1] for body in self.bodylist],dtype=np.longdouble) pzdata = np.array([body.p[2] for body in self.bodylist],dtype=np.longdouble) return pxdata, pydata, pzdata @property def M(self): #return total system mass mass = 0 for body in self.bodylist: mass = mass + body.m return mass @property def mu(self): prod = 1 for body in self.bodylist: prod = prod * body.m mu = prod/self.M return mu @property def COM(self): #return center of mass in cartesian np_array coord = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: coord = coord + body.m*body.q coord = coord/self.M return coord @property def COMV(self): #return center of mass velocity in cartesian np_array coord = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: coord = coord + body.m*body.v coord = coord/self.M return coord def COMShift(self): #Shift coordinates of bodies in system to COM frame and set COM at rest COM = self.COM COMV = self.COMV for body in self.bodylist: body.q = body.q - COM body.v = body.v - COMV def COMShiftBin(self): #Shift coordinates of inner binary system to COM frame and set COM at rest COM = self.COM COMV = self.COMV for body in self.bodylist: body.qb = body.qb - COM body.vb = body.vb - COMV @property def LBIN(self): #return angular momentum of inner binary self.COMShiftBin() L = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: L = L + np.cross(body.qb,body.pb) return L @property def EBIN(self): #return total energy of inner binary self.COMShiftBin() T = 0 W = 0 for body in self.bodylist: T = T + 1./2.*body.m*np.linalg.norm(body.vb)**2 for otherbody in self.bodylist: if body != otherbody: rij = np.linalg.norm(body.qb-otherbody.qb) W = W - Ga*body.m*otherbody.m/rij E = T + W return E @property def LCOM(self): #return angular momentum of the center of mass LCOM = np.zeros(3,dtype=np.longdouble) dr = self.bodylist[0].m/self.mu*self.bodylist[0].q dv = self.bodylist[0].m/self.mu*self.bodylist[0].v LCOM = self.mu*np.cross(dr,dv) LCOM = self.L return LCOM @property def ECOM(self): #return mechanical energy of the center of mass dr = self.bodylist[0].m/self.mu*self.bodylist[0].q dv = self.bodylist[0].m/self.mu*self.bodylist[0].v ECOM = self.mu/2.*np.linalg.norm(dv)**2 - Ga*self.M*self.mu/np.linalg.norm(dr) ECOM = self.E return ECOM @property def L(self): #return angular momentum of bodies in system L = np.zeros(3,dtype=np.longdouble) for body in self.bodylist: L = L + np.cross(body.q,body.p) return L @property def E(self): #return total energy of bodies in system T = 0 W = 0 for body in self.bodylist: T = T + 1./2.*body.m*np.linalg.norm(body.v)**2 for otherbody in self.bodylist: if body != otherbody: rij = np.linalg.norm(body.q-otherbody.q) W = W - Ga*body.m*otherbody.m/rij E = T + W return E @property def ecc(self): #exentricity of two body sub system if len(self.bodylist) == 2 : ecc = (2.*self.EBIN*(np.linalg.norm(self.LBIN)**2))/((Ga**2)*(self.M**2)*(self.mu**3)) + 1. else : ecc = np.nan return ecc @property def sma(self): #semi major axis of two body sub system if len(self.bodylist) == 2 : sma = -Ga*self.M*self.mu/(2.*self.EBIN) else : sma = np.nan return sma @property def phi(self,body1,body2): #return angle in degree between plans formed by body1 and body2 (perurbator) trajectories if len(self.bodylist) == 3 : body1 = self.bodylist[0] body2 = self.bodylist[2] n1 = np.cross(body1.q, body1.v) n2 = np.cross(body2.q, body2.v) phi = np.arccos(np.dot(n1, n2) / (np.linalg.norm(n1) * np.linalg.norm(n2))) phi = Angle(phi, u.radian) phi = phi.dec else : phi = np.nan return phi """"" def update_coordarray(self): #add current positions of bodies in system in coordarray array. sub_array = [] for body in self.bodylist: sub_array.append(body.q) self.coordarray.append(sub_array) def orbital_analysis(self): #derive semi major axis and eccentricity evolution. """""