#!/usr/bin/python # -*- coding:utf-8 -*- """ Implementation of the plotting and visualization functions. """ import numpy as np import time import matplotlib.pyplot as plt class DynamicUpdate(): #Suppose we know the x range min_x = -10 max_x = 10 plt.ion() def set_lims(self, factor=1.5): self.ax.set_xlim(factor*self.min_x, factor*self.max_x) self.ax.set_ylim(factor*self.min_x, factor*self.max_x) self.ax.set_zlim(factor*self.min_x, factor*self.max_x) def on_launch(self): #Set up plot self.fig = plt.figure(figsize=(10,10)) self.ax = self.fig.add_subplot(projection='3d') self.lines, = self.ax.plot([],[],[],'o') #Autoscale on unknown axis and known lims on the other self.ax.set_autoscaley_on(True) self.set_lims() #Other stuff self.ax.grid() #self.ax.set_aspect('equal') def on_running(self, xdata, ydata, zdata, step=None, label=None): values = np.sqrt(np.sum((np.array((xdata,ydata,zdata))**2).T,axis=1)) self.min_x, self.max_x = -np.abs(values).max(), np.abs(values).max() self.set_lims() #Update data (with the new _and_ the old points) self.lines.set_data_3d(xdata, ydata, zdata) if not label is None: self.ax.set_title(label) #Need both of these in order to rescale self.ax.relim() self.ax.autoscale_view() #We need to draw *and* flush self.fig.canvas.draw() self.fig.canvas.flush_events() if not step is None and step%1000==0: self.fig.savefig("tmp/{0:06d}.png".format(step),bbox_inches="tight") #Example def __call__(self): import numpy as np import time self.on_launch() xdata = [] ydata = [] for x in np.arange(0,10,0.5): xdata.append(x) ydata.append(np.exp(-x**2)+10*np.exp(-(x-7)**2)) self.on_running(xdata, ydata) time.sleep(1) return xdata, ydata