Add get masses/positions/momenta methods and modify frogleap input/output
This commit is contained in:
@@ -24,12 +24,16 @@ def dp_dt(m_array, q_array):
|
|||||||
dp_array[np.isnan(dp_array)] = 0.
|
dp_array[np.isnan(dp_array)] = 0.
|
||||||
return dp_array
|
return dp_array
|
||||||
|
|
||||||
def frogleap(duration, step, m_array, q_array, p_array, display=False):
|
def frogleap(duration, step, dyn_syst, display=False):
|
||||||
"""
|
"""
|
||||||
Leapfrog integrator for first order partial differential equations.
|
Leapfrog integrator for first order partial differential equations.
|
||||||
iteration : half-step drift -> full-step kick -> half-step drift
|
iteration : half-step drift -> full-step kick -> half-step drift
|
||||||
"""
|
"""
|
||||||
N = np.ceil(duration/step).astype(int)
|
N = np.ceil(duration/step).astype(int)
|
||||||
|
m_array = dyn_syst.get_masses()
|
||||||
|
q_array = dyn_syst.get_positions()
|
||||||
|
p_array = dyn_syst.get_momenta()
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
d = DynamicUpdate()
|
d = DynamicUpdate()
|
||||||
d.min_x, d.max_x = -1.5*np.abs(q_array).max(), +1.5*np.abs(q_array).max()
|
d.min_x, d.max_x = -1.5*np.abs(q_array).max(), +1.5*np.abs(q_array).max()
|
||||||
@@ -42,14 +46,17 @@ def frogleap(duration, step, m_array, q_array, p_array, display=False):
|
|||||||
# half-step drift
|
# half-step drift
|
||||||
q_array, p_array = q_array + step/2*p_array/m_array , p_array
|
q_array, p_array = q_array + step/2*p_array/m_array , p_array
|
||||||
#print(p_array)
|
#print(p_array)
|
||||||
|
|
||||||
# In center of mass frame
|
|
||||||
q_cm = np.sum(m_array.reshape((q_array.shape[0],1))*q_array, axis=0)/m_array.sum()
|
|
||||||
q_array -= q_cm
|
|
||||||
|
|
||||||
if display:
|
if display:
|
||||||
|
# In center of mass frame
|
||||||
|
q_cm = np.array([0.,0.])#np.sum(m_array.reshape((q_array.shape[0],1))*q_array, axis=0)/m_array.sum()
|
||||||
# display progression
|
# display progression
|
||||||
d.on_running(q_array[:,0], q_array[:,1])
|
d.on_running(q_array[:,0]-q_cm[0], q_array[:,1]-q_cm[1])
|
||||||
time.sleep(0.01)
|
time.sleep(0.01)
|
||||||
|
|
||||||
|
for i, body in enumerate(dyn_syst.bodylist):
|
||||||
|
body.q = q_array[i]
|
||||||
|
body.p = p_array[i]
|
||||||
|
body.v = body.p/body.m
|
||||||
|
|
||||||
return q_array, p_array
|
return dyn_syst
|
||||||
|
|||||||
@@ -24,6 +24,15 @@ class System:
|
|||||||
|
|
||||||
def __init__(self, bodylist):
|
def __init__(self, bodylist):
|
||||||
self.bodylist = bodylist
|
self.bodylist = bodylist
|
||||||
|
|
||||||
|
def get_masses(self): #return the masses of each object
|
||||||
|
return np.array([body.m for body in self.bodylit])
|
||||||
|
|
||||||
|
def get_positions(self): #return the positions of the bodies
|
||||||
|
return np.array([body.q for body in self.bodylist])
|
||||||
|
|
||||||
|
def get_momenta(self): #return the momenta of the bodies
|
||||||
|
return np.array([body.p for body in self.bodylist])
|
||||||
|
|
||||||
def Mass(self): #return total system mass
|
def Mass(self): #return total system mass
|
||||||
mass = 0
|
mass = 0
|
||||||
@@ -51,6 +60,7 @@ class System:
|
|||||||
L = L + np.cross(comq[i],body.p)
|
L = L + np.cross(comq[i],body.p)
|
||||||
i = i+1
|
i = i+1
|
||||||
return L
|
return L
|
||||||
|
|
||||||
def Eval(self,Lbodylist): #return total energy of bodies in bodylist
|
def Eval(self,Lbodylist): #return total energy of bodies in bodylist
|
||||||
G = 1. #Gravitational constant (here normalized)
|
G = 1. #Gravitational constant (here normalized)
|
||||||
T = 0
|
T = 0
|
||||||
|
|||||||
3
main.py
3
main.py
@@ -3,10 +3,11 @@
|
|||||||
from sys import exit as sysexit
|
from sys import exit as sysexit
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from lib.integrator import frogleap
|
from lib.integrator import frogleap
|
||||||
|
import lib.objects
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
#initialisation
|
#initialisation
|
||||||
m = np.array([1e10, 1, 1])
|
m = np.array([1e10, 1, 0])
|
||||||
|
|
||||||
x1 = np.array([0, 0, 0])
|
x1 = np.array([0, 0, 0])
|
||||||
x2 = np.array([1, 0, 0])
|
x2 = np.array([1, 0, 0])
|
||||||
|
|||||||
Reference in New Issue
Block a user