Files
FOC_Reduction/src/lib/plots.py
2023-10-02 11:11:21 +02:00

1984 lines
90 KiB
Python
Executable File

"""
Library functions for displaying informations using matplotlib
prototypes :
- plot_obs(data_array, headers, shape, vmin, vmax, rectangle, savename, plots_folder)
Plots whole observation raw data in given display shape.
- plot_Stokes(Stokes, savename, plots_folder)
Plot the I/Q/U maps from the Stokes HDUList.
- polarization_map(Stokes, data_mask, rectangle, SNRp_cut, SNRi_cut, step_vec, savename, plots_folder, display) -> fig, ax
Plots polarization map of polarimetric parameters saved in an HDUList.
class align_maps(map, other_map, **kwargs)
Class to interactively align maps with different WCS.
class overplot_radio(align_maps)
Class inherited from align_maps to overplot radio data as contours.
class overplot_pol(align_maps)
Class inherited from align_maps to overplot UV polarization vectors on other maps.
class crop_map(hdul, fig, ax)
Class to interactively crop a region of interest of a HDUList.
class crop_Stokes(crop_map)
Class inherited from crop_map to work on polarization maps.
class image_lasso_selector(img, fig, ax)
Class to interactively select part of a map to work on.
class aperture(img, cdelt, radius, fig, ax)
Class to interactively simulate aperture integration.
class pol_map(Stokes, SNRp_cut, SNRi_cut, selection)
Class to interactively study polarization maps making use of the cropping and selecting tools.
"""
from copy import deepcopy
import numpy as np
from os.path import join as path_join
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle, Circle
from matplotlib.path import Path
from matplotlib.widgets import RectangleSelector, LassoSelector, Button, Slider, TextBox
from matplotlib.colors import LogNorm
import matplotlib.font_manager as fm
import matplotlib.patheffects as pe
from mpl_toolkits.axes_grid1.anchored_artists import AnchoredSizeBar, AnchoredDirectionArrows
from astropy.wcs import WCS
from astropy.io import fits
def princ_angle(ang):
"""
Return the principal angle in the 0° to 360° quadrant.
"""
if type(ang) != np.ndarray:
A = np.array([ang])
else:
A = np.array(ang)
while np.any(A < 0.):
A[A<0.] = A[A<0.]+360.
while np.any(A >= 180.):
A[A>=180.] = A[A>=180.]-180.
if type(ang) == type(A):
return A
else:
return A[0]
def sci_not(v,err,rnd=1,out=str):
"""
Return the scientifque error notation as a string.
"""
power = - int(('%E' % v)[-3:])+1
output = [r"({0}".format(round(v*10**power,rnd)),round(v*10**power,rnd)]
if type(err) == list:
for error in err:
output[0] += r" $\pm$ {0}".format(round(error*10**power,rnd))
output.append(round(error*10**power,rnd))
else:
output[0] += r" $\pm$ {0}".format(round(err*10**power,rnd))
output.append(round(err*10**power,rnd))
if out==str:
return output[0]+r")e{0}".format(-power)
else:
return *output[1:],-power
def plot_obs(data_array, headers, shape=None, vmin=None, vmax=None, rectangle=None,
savename=None, plots_folder=""):
"""
Plots raw observation imagery with some information on the instrument and
filters.
----------
Inputs:
data_array : numpy.ndarray
Array of images (2D floats, aligned and of the same shape) of a
single observation with multiple polarizers of an instrument
headers : header list
List of headers corresponding to the images in data_array
shape : array-like of length 2, optional
Shape of the display, with shape = [#row, #columns]. If None, defaults
to the optimal square.
Defaults to None.
vmin : float, optional
Min pixel value that should be displayed.
Defaults to 0.
vmax : float, optional
Max pixel value that should be displayed.
Defaults to 6.
rectangle : numpy.ndarray, optional
Array of parameters for matplotlib.patches.Rectangle objects that will
be displayed on each output image. If None, no rectangle displayed.
Defaults to None.
savename : str, optional
Name of the figure the map should be saved to. If None, the map won't
be saved (only displayed).
Defaults to None.
plots_folder : str, optional
Relative (or absolute) filepath to the folder in wich the map will
be saved. Not used if savename is None.
Defaults to current folder.
"""
plt.rcParams.update({'font.size': 10})
if shape is None:
shape = np.array([np.ceil(np.sqrt(data_array.shape[0])).astype(int),]*2)
fig, ax = plt.subplots(shape[0], shape[1], figsize=(10,10), dpi=200,
sharex=True, sharey=True)
for i, (axe,data,head) in enumerate(zip(ax.flatten(),data_array,headers)):
instr = head['instrume']
rootname = head['rootname']
exptime = head['exptime']
filt = head['filtnam1']
convert = head['photflam']
#plots
if vmin is None or vmax is None:
vmin, vmax = convert*data[data>0.].min()/10., convert*data[data>0.].max()
#im = axe.imshow(convert*data, vmin=vmin, vmax=vmax, origin='lower', cmap='gray')
data[data*convert<vmin*10.] = vmin*10./convert
im = axe.imshow(convert*data, norm=LogNorm(vmin,vmax), origin='lower', cmap='gray')
if not(rectangle is None):
x, y, width, height, angle, color = rectangle[i]
axe.add_patch(Rectangle((x, y), width, height, angle=angle,
edgecolor=color, fill=False))
#position of centroid
axe.plot([data.shape[1]/2, data.shape[1]/2], [0,data.shape[0]-1], '--', lw=1,
color='grey', alpha=0.5)
axe.plot([0,data.shape[1]-1], [data.shape[1]/2, data.shape[1]/2], '--', lw=1,
color='grey', alpha=0.5)
axe.annotate(instr+":"+rootname,color='white',fontsize=5,xy=(0.02, 0.95),
xycoords='axes fraction')
axe.annotate(filt,color='white',fontsize=10,xy=(0.02, 0.02),
xycoords='axes fraction')
axe.annotate(exptime,color='white',fontsize=5,xy=(0.80, 0.02),
xycoords='axes fraction')
fig.subplots_adjust(hspace=0.01, wspace=0.01, right=0.85)
cbar_ax = fig.add_axes([0.9, 0.12, 0.02, 0.75])
fig.colorbar(im, cax=cbar_ax, label=r"Flux [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
if not (savename is None):
#fig.suptitle(savename)
fig.savefig(path_join(plots_folder,savename+".png"),bbox_inches='tight')
plt.show()
return 0
def plot_Stokes(Stokes, savename=None, plots_folder=""):
"""
Plots I/Q/U maps.
----------
Inputs:
Stokes : astropy.io.fits.hdu.hdulist.HDUList
HDUList containing I, Q, U, P, s_P, PA, s_PA (in this particular order)
for one observation.
savename : str, optional
Name of the figure the map should be saved to. If None, the map won't
be saved (only displayed).
Defaults to None.
plots_folder : str, optional
Relative (or absolute) filepath to the folder in wich the map will
be saved. Not used if savename is None.
Defaults to current folder.
"""
# Get data
stkI = Stokes[np.argmax([Stokes[i].header['datatype']=='I_stokes' for i in range(len(Stokes))])].data
stkQ = Stokes[np.argmax([Stokes[i].header['datatype']=='Q_stokes' for i in range(len(Stokes))])].data
stkU = Stokes[np.argmax([Stokes[i].header['datatype']=='U_stokes' for i in range(len(Stokes))])].data
wcs = WCS(Stokes[0]).deepcopy()
# Plot figure
plt.rcParams.update({'font.size': 10})
fig = plt.figure(figsize=(15,5))
ax = fig.add_subplot(131, projection=wcs)
im = ax.imshow(stkI, origin='lower', cmap='inferno')
plt.colorbar(im)
ax.set(xlabel="RA", ylabel="DEC", title=r"$I_{stokes}$")
ax = fig.add_subplot(132, projection=wcs)
im = ax.imshow(stkQ, origin='lower', cmap='inferno')
plt.colorbar(im)
ax.set(xlabel="RA", ylabel="DEC", title=r"$Q_{stokes}$")
ax = fig.add_subplot(133, projection=wcs)
im = ax.imshow(stkU, origin='lower', cmap='inferno')
plt.colorbar(im)
ax.set(xlabel="RA", ylabel="DEC", title=r"$U_{stokes}$")
if not (savename is None):
#fig.suptitle(savename+"_IQU")
fig.savefig(path_join(plots_folder,savename+"_IQU.png"),bbox_inches='tight')
plt.show()
return 0
def polarization_map(Stokes, data_mask=None, rectangle=None, SNRp_cut=3., SNRi_cut=30.,
flux_lim=None, step_vec=1, vec_scale=2., savename=None, plots_folder="", display="default"):
"""
Plots polarization map from Stokes HDUList.
----------
Inputs:
Stokes : astropy.io.fits.hdu.hdulist.HDUList
HDUList containing I, Q, U, P, s_P, PA, s_PA (in this particular order)
for one observation.
rectangle : numpy.ndarray, optional
Array of parameters for matplotlib.patches.Rectangle objects that will
be displayed on each output image. If None, no rectangle displayed.
Defaults to None.
SNRp_cut : float, optional
Cut that should be applied to the signal-to-noise ratio on P.
Any SNR < SNRp_cut won't be displayed.
Defaults to 3.
SNRi_cut : float, optional
Cut that should be applied to the signal-to-noise ratio on I.
Any SNR < SNRi_cut won't be displayed.
Defaults to 30. This value implies an uncertainty in P of 4.7%
flux_lim : float list, optional
Limits that should be applied to the flux colorbar.
Defaults to None, limits are computed on the background value and the
maximum value in the cut.
step_vec : int, optional
Number of steps between each displayed polarization vector.
If step_vec = 2, every other vector will be displayed.
Defaults to 1
vec_scale : float, optional
Pixel length of displayed 100% polarization vector.
If vec_scale = 2, a vector of 50% polarization will be 1 pixel wide.
Defaults to 2.
savename : str, optional
Name of the figure the map should be saved to. If None, the map won't
be saved (only displayed).
Defaults to None.
plots_folder : str, optional
Relative (or absolute) filepath to the folder in wich the map will
be saved. Not used if savename is None.
Defaults to current folder.
display : str, optional
Choose the map to display between intensity (default), polarization
degree ('p','pol','pol_deg') or polarization degree error ('s_p',
'pol_err','pol_deg_err').
Defaults to None (intensity).
----------
Returns:
fig, ax : matplotlib.pyplot object
The figure and ax created for interactive contour maps.
"""
#Get data
stkI = Stokes[np.argmax([Stokes[i].header['datatype']=='I_stokes' for i in range(len(Stokes))])]
stkQ = Stokes[np.argmax([Stokes[i].header['datatype']=='Q_stokes' for i in range(len(Stokes))])]
stkU = Stokes[np.argmax([Stokes[i].header['datatype']=='U_stokes' for i in range(len(Stokes))])]
stk_cov = Stokes[np.argmax([Stokes[i].header['datatype']=='IQU_cov_matrix' for i in range(len(Stokes))])]
pol = Stokes[np.argmax([Stokes[i].header['datatype']=='Pol_deg_debiased' for i in range(len(Stokes))])]
pol_err = Stokes[np.argmax([Stokes[i].header['datatype']=='Pol_deg_err' for i in range(len(Stokes))])]
pang = Stokes[np.argmax([Stokes[i].header['datatype']=='Pol_ang' for i in range(len(Stokes))])]
try:
if data_mask is None:
data_mask = Stokes[np.argmax([Stokes[i].header['datatype']=='Data_mask' for i in range(len(Stokes))])].data.astype(bool)
except KeyError:
data_mask = np.ones(stkI.shape).astype(bool)
pivot_wav = Stokes[0].header['photplam']
convert_flux = Stokes[0].header['photflam']
wcs = WCS(Stokes[0]).deepcopy()
#Plot Stokes parameters map
if display is None or display.lower() in ['default']:
plot_Stokes(Stokes, savename=savename, plots_folder=plots_folder)
#Compute SNR and apply cuts
poldata, pangdata = pol.data.copy(), pang.data.copy()
maskP = pol_err.data > 0
SNRp = np.zeros(pol.data.shape)
SNRp[maskP] = pol.data[maskP]/pol_err.data[maskP]
maskI = stk_cov.data[0,0] > 0
SNRi = np.zeros(stkI.data.shape)
SNRi[maskI] = stkI.data[maskI]/np.sqrt(stk_cov.data[0,0][maskI])
mask = (SNRp > SNRp_cut) * (SNRi > SNRi_cut)
poldata[np.logical_not(mask)] = np.nan
pangdata[np.logical_not(mask)] = np.nan
# Look for pixel of max polarization
if np.isfinite(pol.data).any():
p_max = np.max(pol.data[np.isfinite(pol.data)])
x_max, y_max = np.unravel_index(np.argmax(pol.data==p_max),pol.data.shape)
else:
print("No pixel with polarization information above requested SNR.")
#Plot the map
plt.rcParams.update({'font.size': 10})
plt.rcdefaults()
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=wcs)
ax.set_facecolor('k')
fig.subplots_adjust(hspace=0, wspace=0, right=0.9)
cbar_ax = fig.add_axes([0.95, 0.12, 0.01, 0.75])
if display.lower() in ['intensity']:
# If no display selected, show intensity map
display='i'
if flux_lim is None:
if mask.sum() > 0.:
vmin, vmax = 1./2.*np.median(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
else:
vmin, vmax = 1./2.*np.median(np.sqrt(stk_cov.data[0,0][stkI.data > 0.])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
else:
vmin, vmax = flux_lim
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
levelsI = np.linspace(vmax*0.01, vmax*0.99, 10)
print("Total flux contour levels : ", levelsI)
cont = ax.contour(stkI.data*convert_flux, levels=levelsI, colors='grey', linewidths=0.5)
#ax.clabel(cont,inline=True,fontsize=6)
elif display.lower() in ['pol_flux']:
# Display polarisation flux
display='pf'
pf_mask = (stkI.data > 0.) * (pol.data > 0.)
if flux_lim is None:
if mask.sum() > 0.:
vmin, vmax = 1./2.*np.median(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
else:
vmin, vmax = 1./2.*np.median(np.sqrt(stk_cov.data[0,0][stkI.data > 0.])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
else:
vmin, vmax = flux_lim
im = ax.imshow(stkI.data*convert_flux*pol.data, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
levelsPf = np.linspace(vmax*0.01, vmax*0.99, 10)
print("Polarized flux contour levels : ", levelsPf)
cont = ax.contour(stkI.data*convert_flux*pol.data, levels=levelsPf, colors='grey', linewidths=0.5)
#ax.clabel(cont,inline=True,fontsize=6)
elif display.lower() in ['p','pol','pol_deg']:
# Display polarization degree map
display='p'
vmin, vmax = 0., 100.
im = ax.imshow(pol.data*100., vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$P$ [%]")
elif display.lower() in ['pa','pang','pol_ang']:
# Display polarization degree map
display='pa'
vmin, vmax = 0., 180.
im = ax.imshow(princ_angle(pang.data), vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\theta_P$ [°]")
elif display.lower() in ['s_p','pol_err','pol_deg_err']:
# Display polarization degree error map
display='s_p'
if (SNRp>SNRp_cut).any():
vmin, vmax = 0., np.max(pol_err.data[SNRp > SNRp_cut])*100.
p_err = deepcopy(pol_err.data)
p_err[p_err > vmax/100.] = np.nan
im = ax.imshow(p_err*100., vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
else:
im = ax.imshow(pol_err.data*100., aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\sigma_P$ [%]")
elif display.lower() in ['s_i','i_err']:
# Display intensity error map
display='s_i'
if (SNRi>SNRi_cut).any():
vmin, vmax = np.min(np.sqrt(stk_cov.data[0,0][stk_cov.data[0,0] > 0.])*convert_flux), np.max(np.sqrt(stk_cov.data[0,0][stk_cov.data[0,0] > 0.])*convert_flux)
im = ax.imshow(np.sqrt(stk_cov.data[0,0])*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
else:
im = ax.imshow(np.sqrt(stk_cov.data[0,0])*convert_flux, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$\sigma_I$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
elif display.lower() in ['snr','snri']:
# Display I_stokes signal-to-noise map
display='snri'
vmin, vmax = 0., np.max(SNRi[np.isfinite(SNRi)])
if vmax*0.99 > SNRi_cut:
im = ax.imshow(SNRi, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
levelsSNRi = np.linspace(SNRi_cut, vmax*0.99, 10)
print("SNRi contour levels : ", levelsSNRi)
cont = ax.contour(SNRi, levels=levelsSNRi, colors='grey', linewidths=0.5)
#ax.clabel(cont,inline=True,fontsize=6)
else:
im = ax.imshow(SNRi, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$I_{Stokes}/\sigma_{I}$")
elif display.lower() in ['snrp']:
# Display polarization degree signal-to-noise map
display='snrp'
vmin, vmax = 0., np.max(SNRp[np.isfinite(SNRp)])
if vmax*0.99 > SNRp_cut:
im = ax.imshow(SNRp, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
levelsSNRp = np.linspace(SNRp_cut, vmax*0.99, 10)
print("SNRp contour levels : ", levelsSNRp)
cont = ax.contour(SNRp, levels=levelsSNRp, colors='grey', linewidths=0.5)
#ax.clabel(cont,inline=True,fontsize=6)
else:
im = ax.imshow(SNRp, aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$P/\sigma_{P}$")
else:
# Defaults to intensity map
if mask.sum() > 0.:
vmin, vmax = 1.*np.mean(np.sqrt(stk_cov.data[0,0][mask])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
else:
vmin, vmax = 1.*np.mean(np.sqrt(stk_cov.data[0,0][stkI.data > 0.])*convert_flux), np.max(stkI.data[stkI.data > 0.]*convert_flux)
#im = ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
#cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
im = ax.imshow(stkI.data*convert_flux, norm=LogNorm(vmin,vmax), aspect='equal', cmap='inferno', alpha=1.)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA$]")
#Get integrated values from header
n_pix = stkI.data[data_mask].size
I_diluted = stkI.data[data_mask].sum()
I_diluted_err = np.sqrt(n_pix)*np.sqrt(np.sum(stk_cov.data[0,0][data_mask]))
P_diluted = Stokes[0].header['P_int']
P_diluted_err = Stokes[0].header['P_int_err']
PA_diluted = Stokes[0].header['PA_int']
PA_diluted_err = Stokes[0].header['PA_int_err']
px_size = wcs.wcs.get_cdelt()[0]*3600.
px_sc = AnchoredSizeBar(ax.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
north_dir = AnchoredDirectionArrows(ax.transAxes, "E", "N", length=-0.08, fontsize=0.025, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, back_length=0., head_length=10., head_width=10., angle=-Stokes[0].header['orientat'], color='white', text_props={'ec': 'k', 'fc': 'w', 'alpha': 1, 'lw': 0.4}, arrow_props={'ec': 'k','fc':'w','alpha': 1,'lw': 1})
if display.lower() in ['i','s_i','snri','pf','p','pa','s_p','snrp']:
if step_vec == 0:
poldata[np.isfinite(poldata)] = 1./2.
step_vec = 1
vec_scale = 2.
X, Y = np.meshgrid(np.arange(stkI.data.shape[1]), np.arange(stkI.data.shape[0]))
U, V = poldata*np.cos(np.pi/2.+pangdata*np.pi/180.), poldata*np.sin(np.pi/2.+pangdata*np.pi/180.)
Q = ax.quiver(X[::step_vec,::step_vec],Y[::step_vec,::step_vec],U[::step_vec,::step_vec],V[::step_vec,::step_vec],units='xy',angles='uv',scale=1./vec_scale,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,linewidth=0.5,color='w',edgecolor='k')
pol_sc = AnchoredSizeBar(ax.transData, vec_scale, r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
ax.add_artist(pol_sc)
ax.add_artist(px_sc)
ax.add_artist(north_dir)
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(pivot_wav,sci_not(I_diluted*convert_flux,I_diluted_err*convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_diluted*100.,P_diluted_err*100.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_diluted,PA_diluted_err), color='white', xy=(0.01, 0.92), xycoords='axes fraction',path_effects=[pe.withStroke(linewidth=0.5,foreground='k')])
else:
if display.lower() == 'default':
ax.add_artist(px_sc)
ax.add_artist(north_dir)
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(pivot_wav,sci_not(I_diluted*convert_flux,I_diluted_err*convert_flux,2)), color='white', xy=(0.01, 0.97), xycoords='axes fraction',path_effects=[pe.withStroke(linewidth=0.5,foreground='k')])
# Display instrument FOV
if not(rectangle is None):
x, y, width, height, angle, color = rectangle
x, y = np.array([x, y])- np.array(stkI.data.shape)/2.
ax.add_patch(Rectangle((x, y), width, height, angle=angle,
edgecolor=color, fill=False))
#ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
ax.coords[0].set_axislabel('Right Ascension (J2000)')
ax.coords[0].set_axislabel_position('t')
ax.coords[0].set_ticklabel_position('t')
ax.coords[1].set_axislabel('Declination (J2000)')
ax.coords[1].set_axislabel_position('l')
ax.coords[1].set_ticklabel_position('l')
ax.axis('equal')
if not savename is None:
if not savename[-4:] in ['.png', '.jpg']:
savename += '.pdf'
fig.savefig(path_join(plots_folder,savename),bbox_inches='tight',dpi=300)
plt.show()
return fig, ax
class align_maps(object):
"""
Class to interactively align maps with different WCS.
"""
def __init__(self, map1, other_map, **kwargs):
self.aligned = False
self.map = map1
self.other_map = other_map
self.wcs_map = deepcopy(WCS(self.map[0])).celestial
if len(self.map[0].data.shape) == 4:
self.map[0].data = self.map[0].data[0,0]
elif len(self.map[0].data.shape) == 3:
self.map[0].data = self.map[0].data[1]
self.wcs_other = deepcopy(WCS(self.other_map[0])).celestial
if len(self.other_map[0].data.shape) == 4:
self.other_map[0].data = self.other_map[0].data[0,0]
elif len(self.other_map[0].data.shape) == 3:
self.other_map[0].data = self.other_map[0].data[1]
try:
convert_flux = self.map[0].header['photflam']
except KeyError:
convert_flux = 1.
try:
other_convert = self.other_map[0].header['photflam']
except KeyError:
other_convert = 1.
#Get data
data = self.map[0].data
other_data = self.other_map[0].data
plt.rcParams.update({'font.size': 10})
self.fig = plt.figure(figsize=(10,10))
#Plot the UV map
self.ax1 = self.fig.add_subplot(121, projection=self.wcs_map)
self.ax1.set_facecolor('k')
vmin, vmax = 0., np.max(data[data > 0.]*convert_flux)
for key, value in [["cmap",[["cmap","inferno"]]], ["norm",[["vmin",vmin],["vmax",vmax]]]]:
try:
test = kwargs[key]
except KeyError:
for key_i, val_i in value:
kwargs[key_i] = val_i
im1 = self.ax1.imshow(data*convert_flux, aspect='equal', **kwargs)
px_size = self.wcs_map.wcs.get_cdelt()[0]*3600.
px_sc = AnchoredSizeBar(self.ax1.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
self.ax1.add_artist(px_sc)
try:
north_dir1 = AnchoredDirectionArrows(self.ax1.transAxes, "E", "N", length=-0.08, fontsize=0.025, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, back_length=0., head_length=10., head_width=10., angle=-self.map[0].header['orientat'], color='white', text_props={'ec': None, 'fc': 'w', 'alpha': 1, 'lw': 0.4}, arrow_props={'ec': None,'fc':'w','alpha': 1,'lw': 1})
self.ax1.add_artist(north_dir1)
except KeyError:
pass
self.cr_map, = self.ax1.plot(*self.wcs_map.wcs.crpix, 'r+')
self.ax1.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)", title="Click on selected point of reference.")
#Plot the other map
self.ax2 = self.fig.add_subplot(122, projection=self.wcs_other)
self.ax2.set_facecolor('k')
vmin, vmax = 0., np.max(other_data[other_data > 0.]*other_convert)
for key, value in [["cmap",[["cmap","inferno"]]], ["norm",[["vmin",vmin],["vmax",vmax]]]]:
try:
test = kwargs[key]
except KeyError:
for key_i, val_i in value:
kwargs[key_i] = val_i
im2 = self.ax2.imshow(other_data*other_convert, aspect='equal', **kwargs)
fontprops = fm.FontProperties(size=16)
px_size = self.wcs_other.wcs.get_cdelt()[0]*3600.
px_sc = AnchoredSizeBar(self.ax2.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w', fontproperties=fontprops)
self.ax2.add_artist(px_sc)
try:
north_dir2 = AnchoredDirectionArrows(self.ax2.transAxes, "E", "N", length=-0.08, fontsize=0.03, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, angle=-self.other_map[0].header['orientat'], color='w', arrow_props={'ec': None, 'fc': 'w', 'alpha': 1,'lw': 2})
self.ax2.add_artist(north_dir2)
except KeyError:
pass
self.cr_other, = self.ax2.plot(*self.wcs_other.wcs.crpix, 'r+')
self.ax2.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)", title="Click on selected point of reference.")
#Selection button
self.axapply = self.fig.add_axes([0.80, 0.01, 0.1, 0.04])
self.bapply = Button(self.axapply, 'Apply reference')
self.bapply.label.set_fontsize(8)
self.axreset = self.fig.add_axes([0.60, 0.01, 0.1, 0.04])
self.breset = Button(self.axreset, 'Leave as is')
self.breset.label.set_fontsize(8)
self.enter = self.fig.canvas.mpl_connect('key_press_event', self.on_key)
def on_key(self, event):
if event.key.lower() == "enter":
self.on_close_align(event)
def get_aligned_wcs(self):
return self.wcs_map, self.wcs_other
def onclick_ref(self, event) -> None:
if self.fig.canvas.manager.toolbar.mode == '':
if (event.inaxes is not None) and (event.inaxes == self.ax1):
x = event.xdata
y = event.ydata
self.cr_map.set(data=[x,y])
self.fig.canvas.draw_idle()
if (event.inaxes is not None) and (event.inaxes == self.ax2):
x = event.xdata
y = event.ydata
self.cr_other.set(data=[x,y])
self.fig.canvas.draw_idle()
def reset_align(self, event):
self.wcs_map.wcs.crpix = WCS(self.map[0].header).wcs.crpix[:2]
self.wcs_other.wcs.crpix = WCS(self.other_map[0].header).wcs.crpix[:2]
self.fig.canvas.draw_idle()
if self.aligned:
plt.close()
self.aligned = True
def apply_align(self, event=None):
if np.array(self.cr_map.get_data()).shape == (2,1):
self.wcs_map.wcs.crpix = np.array(self.cr_map.get_data())[:,0]
else:
self.wcs_map.wcs.crpix = np.array(self.cr_map.get_data())
if np.array(self.cr_other.get_data()).shape == (2,1):
self.wcs_other.wcs.crpix = np.array(self.cr_other.get_data())[:,0]
else:
self.wcs_other.wcs.crpix = np.array(self.cr_other.get_data())
self.wcs_map.wcs.crval = np.array(self.wcs_map.pixel_to_world_values(*self.wcs_map.wcs.crpix))
self.wcs_other.wcs.crval = self.wcs_map.wcs.crval
self.fig.canvas.draw_idle()
if self.aligned:
plt.close()
self.aligned = True
def on_close_align(self, event):
if not self.aligned:
self.aligned = True
self.apply_align()
def align(self):
self.fig.canvas.draw()
self.fig.canvas.mpl_connect('button_press_event', self.onclick_ref)
self.bapply.on_clicked(self.apply_align)
self.breset.on_clicked(self.reset_align)
self.fig.canvas.mpl_connect('close_event', self.on_close_align)
plt.show(block=True)
return self.get_aligned_wcs()
class overplot_radio(align_maps):
"""
Class to overplot maps from different observations.
Inherit from class align_maps in order to get the same WCS on both maps.
"""
def overplot(self, other_levels, SNRp_cut=3., SNRi_cut=30., savename=None):
self.Stokes_UV = self.map
self.wcs_UV = self.wcs_map
#Get Data
obj = self.Stokes_UV[0].header['targname']
stkI = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='I_stokes' for i in range(len(self.Stokes_UV))])]
stk_cov = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='IQU_cov_matrix' for i in range(len(self.Stokes_UV))])]
pol = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_debiased' for i in range(len(self.Stokes_UV))])]
pol_err = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_err' for i in range(len(self.Stokes_UV))])]
pang = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_ang' for i in range(len(self.Stokes_UV))])]
other_data = self.other_map[0].data
other_convert = 1.
other_unit = self.other_map[0].header['bunit']
if other_unit.lower() == 'jy/beam':
other_unit = r"mJy/Beam"
other_convert = 1e3
other_freq = self.other_map[0].header['crval3']
convert_flux = self.Stokes_UV[0].header['photflam']
#Compute SNR and apply cuts
pol.data[pol.data == 0.] = np.nan
SNRp = pol.data/pol_err.data
SNRp[np.isnan(SNRp)] = 0.
pol.data[SNRp < SNRp_cut] = np.nan
SNRi = stkI.data/np.sqrt(stk_cov.data[0,0])
SNRi[np.isnan(SNRi)] = 0.
pol.data[SNRi < SNRi_cut] = np.nan
plt.rcParams.update({'font.size': 16})
self.fig2 = plt.figure(figsize=(15,15))
self.ax = self.fig2.add_subplot(111, projection=self.wcs_UV)
self.ax.set_facecolor('k')
self.fig2.subplots_adjust(hspace=0, wspace=0, right=0.9)
#Display UV intensity map with polarization vectors
vmin, vmax = 0., np.max(stkI.data[stkI.data > 0.]*convert_flux)
im = self.ax.imshow(stkI.data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=1.)
cbar_ax = self.fig2.add_axes([0.95, 0.12, 0.01, 0.75])
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
pol.data[np.isfinite(pol.data)] = 1./2.
step_vec = 1
X, Y = np.meshgrid(np.arange(stkI.data.shape[1]), np.arange(stkI.data.shape[0]))
U, V = pol.data*np.cos(np.pi/2.+pang.data*np.pi/180.), pol.data*np.sin(np.pi/2.+pang.data*np.pi/180.)
Q = self.ax.quiver(X[::step_vec,::step_vec],Y[::step_vec,::step_vec],U[::step_vec,::step_vec],V[::step_vec,::step_vec],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='w')
self.ax.autoscale(False)
#Display other map as contours
other_cont = self.ax.contour(other_data*other_convert, transform=self.ax.get_transform(self.wcs_other), levels=other_levels*other_convert, colors='grey')
self.ax.clabel(other_cont, inline=True, fontsize=8)
self.ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)", title="HST/FOC UV polarization map of {0:s} overplotted with {1:.2f}GHz map in {2:s}.".format(obj, other_freq*1e-9, other_unit))
#Display pixel scale and North direction
fontprops = fm.FontProperties(size=16)
px_size = self.wcs_UV.wcs.get_cdelt()[0]*3600.
px_sc = AnchoredSizeBar(self.ax.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w', fontproperties=fontprops)
self.ax.add_artist(px_sc)
north_dir = AnchoredDirectionArrows(self.ax.transAxes, "E", "N", length=-0.08, fontsize=0.03, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, angle=-self.Stokes_UV[0].header['orientat'], color='w', arrow_props={'ec': None, 'fc': 'w', 'alpha': 1,'lw': 2})
self.ax.add_artist(north_dir)
self.cr_map, = self.ax.plot(*self.wcs_map.wcs.crpix, 'r+')
crpix_other = self.wcs_map.world_to_pixel(self.wcs_other.pixel_to_world(*self.wcs_other.wcs.crpix))
self.cr_other, = self.ax.plot(*crpix_other, 'g+')
if not(savename is None):
self.fig2.savefig(savename,bbox_inches='tight',dpi=200)
self.fig2.canvas.draw()
def plot(self, levels, SNRp_cut=3., SNRi_cut=30., savename=None) -> None:
while not self.aligned:
self.align()
self.overplot(other_levels=levels, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=savename)
plt.show(block=True)
class overplot_pol(align_maps):
"""
Class to overplot maps from different observations.
Inherit from class align_maps in order to get the same WCS on both maps.
"""
def overplot(self, SNRp_cut=3., SNRi_cut=30., vec_scale=2., savename=None, **kwargs):
self.Stokes_UV = self.map
self.wcs_UV = self.wcs_map
#Get Data
obj = self.Stokes_UV[0].header['targname']
stkI = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='I_stokes' for i in range(len(self.Stokes_UV))])]
stk_cov = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='IQU_cov_matrix' for i in range(len(self.Stokes_UV))])]
pol = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_debiased' for i in range(len(self.Stokes_UV))])]
pol_err = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_deg_err' for i in range(len(self.Stokes_UV))])]
pang = self.Stokes_UV[np.argmax([self.Stokes_UV[i].header['datatype']=='Pol_ang' for i in range(len(self.Stokes_UV))])]
convert_flux = self.Stokes_UV[0].header['photflam']
other_data = self.other_map[0].data
try:
other_convert = self.other_map[0].header['photflam']
except KeyError:
other_convert = 1.
#Compute SNR and apply cuts
pol.data[pol.data == 0.] = np.nan
SNRp = pol.data/pol_err.data
SNRp[np.isnan(SNRp)] = 0.
pol.data[SNRp < SNRp_cut] = np.nan
SNRi = stkI.data/np.sqrt(stk_cov.data[0,0])
SNRi[np.isnan(SNRi)] = 0.
pol.data[SNRi < SNRi_cut] = np.nan
plt.rcParams.update({'font.size': 16})
self.fig2 = plt.figure(figsize=(15,15))
self.ax = self.fig2.add_subplot(111, projection=self.wcs_UV)
self.ax.set_facecolor('k')
self.fig2.subplots_adjust(hspace=0, wspace=0, right=0.9)
#Display Stokes I as contours
levels_stkI = np.rint(np.linspace(10,99,10))/100.*np.max(stkI.data[stkI.data > 0.]*convert_flux)
cont_stkI = self.ax.contour(stkI.data*convert_flux, transform=self.ax.get_transform(self.wcs_UV), levels=levels_stkI, colors='grey', alpha=0.5)
#self.ax.clabel(cont_stkI, inline=True, fontsize=8)
self.ax.autoscale(False)
#Display full size polarization vectors
pol.data[np.isfinite(pol.data)] = 1./2.
step_vec = 1
X, Y = np.meshgrid(np.arange(stkI.data.shape[1]), np.arange(stkI.data.shape[0]))
U, V = pol.data*np.cos(np.pi/2.+pang.data*np.pi/180.), pol.data*np.sin(np.pi/2.+pang.data*np.pi/180.)
Q = self.ax.quiver(X[::step_vec,::step_vec],Y[::step_vec,::step_vec],U[::step_vec,::step_vec],V[::step_vec,::step_vec],units='xy',angles='uv',scale=1./vec_scale,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,linewidth=0.5,color='white',edgecolor='black')
#Display "other" intensity map
vmin, vmax = 0., np.max(other_data[other_data > 0.]*other_convert)
for key, value in [["cmap",[["cmap","inferno"]]], ["norm",[["vmin",vmin],["vmax",vmax]]]]:
try:
test = kwargs[key]
except KeyError:
for key_i, val_i in value:
kwargs[key_i] = val_i
im = self.ax.imshow(other_data*other_convert, transform=self.ax.get_transform(self.wcs_other), alpha=1., **kwargs)
cbar_ax = self.fig2.add_axes([0.95, 0.12, 0.01, 0.75])
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
self.ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)", title="{0:s} overplotted with polarization vectors and Stokes I contours from HST/FOC".format(obj))
#Display pixel scale and North direction
fontprops = fm.FontProperties(size=16)
px_size = self.wcs_UV.wcs.get_cdelt()[0]*3600.
px_sc = AnchoredSizeBar(self.ax.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w', fontproperties=fontprops)
self.ax.add_artist(px_sc)
north_dir = AnchoredDirectionArrows(self.ax.transAxes, "E", "N", length=-0.08, fontsize=0.03, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, angle=-self.Stokes_UV[0].header['orientat'], color='w', arrow_props={'ec': None, 'fc': 'w', 'alpha': 1,'lw': 2})
self.ax.add_artist(north_dir)
self.cr_map, = self.ax.plot(*self.wcs_map.wcs.crpix, 'r+')
crpix_other = self.wcs_map.world_to_pixel(self.wcs_other.pixel_to_world(*self.wcs_other.wcs.crpix))
self.cr_other, = self.ax.plot(*crpix_other, 'g+')
if not(savename is None):
self.fig2.savefig(savename,bbox_inches='tight',dpi=200)
self.fig2.canvas.draw()
def plot(self, SNRp_cut=3., SNRi_cut=30., vec_scale=2., savename=None, **kwargs) -> None:
while not self.aligned:
self.align()
self.overplot(SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, vec_scale=vec_scale, savename=savename, **kwargs)
plt.show(block=True)
class align_pol(object):
def __init__(self, maps, **kwargs):
order = np.argsort(np.array([curr[0].header['mjd-obs'] for curr in maps]))
maps = np.array(maps)[order]
self.ref_map, self.other_maps = maps[0], maps[1:]
self.wcs = WCS(self.ref_map[0].header)
self.wcs_other = np.array([WCS(map[0].header) for map in self.other_maps])
self.aligned = np.zeros(self.other_maps.shape[0], dtype=bool)
self.kwargs = kwargs
def single_plot(self, curr_map, wcs, v_lim=None, ax_lim=None, SNRp_cut=3., SNRi_cut=30., savename=None, **kwargs):
#Get data
stkI = curr_map[np.argmax([curr_map[i].header['datatype']=='I_stokes' for i in range(len(curr_map))])]
stkQ = curr_map[np.argmax([curr_map[i].header['datatype']=='Q_stokes' for i in range(len(curr_map))])]
stkU = curr_map[np.argmax([curr_map[i].header['datatype']=='U_stokes' for i in range(len(curr_map))])]
stk_cov = curr_map[np.argmax([curr_map[i].header['datatype']=='IQU_cov_matrix' for i in range(len(curr_map))])]
pol = curr_map[np.argmax([curr_map[i].header['datatype']=='Pol_deg_debiased' for i in range(len(curr_map))])]
pol_err = curr_map[np.argmax([curr_map[i].header['datatype']=='Pol_deg_err' for i in range(len(curr_map))])]
pang = curr_map[np.argmax([curr_map[i].header['datatype']=='Pol_ang' for i in range(len(curr_map))])]
try:
data_mask = curr_map[np.argmax([curr_map[i].header['datatype']=='Data_mask' for i in range(len(curr_map))])].data.astype(bool)
except KeyError:
data_mask = np.ones(stkI.shape).astype(bool)
pivot_wav = curr_map[0].header['photplam']
convert_flux = curr_map[0].header['photflam']
#Compute SNR and apply cuts
pol.data[pol.data == 0.] = np.nan
pol_err.data[pol_err.data == 0.] = np.nan
SNRp = pol.data/pol_err.data
SNRp[np.isnan(SNRp)] = 0.
pol.data[SNRp < SNRp_cut] = np.nan
maskI = stk_cov.data[0,0] > 0
SNRi = np.zeros(stkI.data.shape)
SNRi[maskI] = stkI.data[maskI]/np.sqrt(stk_cov.data[0,0][maskI])
pol.data[SNRi < SNRi_cut] = np.nan
mask = (SNRp > SNRp_cut) * (SNRi > SNRi_cut)
#Plot the map
plt.rcParams.update({'font.size': 10})
plt.rcdefaults()
fig = plt.figure(figsize=(10,10))
ax = fig.add_subplot(111, projection=wcs)
ax.set(xlabel="Right Ascension (J2000)", ylabel="Declination (J2000)", facecolor='k',
title="target {0:s} observed on {1:s}".format(curr_map[0].header['targname'], curr_map[0].header['date-obs']))
fig.subplots_adjust(hspace=0, wspace=0, right=0.9)
cbar_ax = fig.add_axes([0.95, 0.12, 0.01, 0.75])
if not ax_lim is None:
lim = np.concatenate([wcs.world_to_pixel(ax_lim[i]) for i in range(len(ax_lim))])
x_lim, y_lim = lim[0::2], lim[1::2]
ax.set(xlim=x_lim,ylim=y_lim)
if v_lim is None:
vmin, vmax = 0., np.max(stkI.data[stkI.data > 0.]*convert_flux)
else:
vmin, vmax = v_lim*convert_flux
for key, value in [["cmap",[["cmap","inferno"]]], ["norm",[["vmin",vmin],["vmax",vmax]]]]:
try:
test = kwargs[key]
if str(type(test)) == "<class 'matplotlib.colors.LogNorm'>":
kwargs[key] = LogNorm(vmin, vmax)
except KeyError:
for key_i, val_i in value:
kwargs[key_i] = val_i
im = ax.imshow(stkI.data*convert_flux, aspect='equal', **kwargs)
cbar = plt.colorbar(im, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
px_size = wcs.wcs.get_cdelt()[0]*3600.
px_sc = AnchoredSizeBar(ax.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
ax.add_artist(px_sc)
north_dir = AnchoredDirectionArrows(ax.transAxes, "E", "N", length=-0.08, fontsize=0.025, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, back_length=0., head_length=10., head_width=10., angle=curr_map[0].header['orientat'], color='white', text_props={'ec': None, 'fc': 'w', 'alpha': 1, 'lw': 0.4}, arrow_props={'ec': None,'fc':'w','alpha': 1,'lw': 1})
ax.add_artist(north_dir)
step_vec = 1
X, Y = np.meshgrid(np.arange(stkI.data.shape[1]), np.arange(stkI.data.shape[0]))
U, V = pol.data*np.cos(np.pi/2.+pang.data*np.pi/180.), pol.data*np.sin(np.pi/2.+pang.data*np.pi/180.)
Q = ax.quiver(X[::step_vec,::step_vec],Y[::step_vec,::step_vec],U[::step_vec,::step_vec],V[::step_vec,::step_vec],units='xy',angles='uv',scale=0.5,scale_units='xy',pivot='mid',headwidth=0.,headlength=0.,headaxislength=0.,width=0.1,color='w')
pol_sc = AnchoredSizeBar(ax.transData, 2., r"$P$= 100 %", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='w')
ax.add_artist(pol_sc)
if not savename is None:
fig.savefig(savename+".png",bbox_inches='tight',dpi=300)
plt.show(block=True)
return fig, ax
def align(self):
for i, curr_map in enumerate(self.other_maps):
curr_align = align_maps(self.ref_map, curr_map, **self.kwargs)
self.wcs, self.wcs_other[i] = curr_align.align()
self.aligned[i] = curr_align.aligned
def plot(self, SNRp_cut=3., SNRi_cut=30., savename=None, **kwargs):
while not self.aligned.all():
self.align()
eps = 1e-35
vmin = np.min([np.min(curr_map[0].data[curr_map[0].data > SNRi_cut*np.max([eps*np.ones(curr_map[0].data.shape),np.sqrt(curr_map[3].data[0,0])],axis=0)]) for curr_map in self.other_maps])/2.5
vmax = np.max([np.max(curr_map[0].data[curr_map[0].data > SNRi_cut*np.max([eps*np.ones(curr_map[0].data.shape),np.sqrt(curr_map[3].data[0,0])],axis=0)]) for curr_map in self.other_maps])
vmin = np.min([vmin, np.min(self.ref_map[0].data[self.ref_map[0].data > SNRi_cut*np.max([eps*np.ones(self.ref_map[0].data.shape),np.sqrt(self.ref_map[3].data[0,0])],axis=0)])])/2.5
vmax = np.max([vmax, np.max(self.ref_map[0].data[self.ref_map[0].data > SNRi_cut*np.max([eps*np.ones(self.ref_map[0].data.shape),np.sqrt(self.ref_map[3].data[0,0])],axis=0)])])
v_lim = np.array([vmin, vmax])
fig, ax = self.single_plot(self.ref_map, self.wcs, v_lim = v_lim, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=savename+'_0', **kwargs)
x_lim, y_lim = ax.get_xlim(), ax.get_ylim()
ax_lim = np.array([self.wcs.pixel_to_world(x_lim[i], y_lim[i]) for i in range(len(x_lim))])
for i, curr_map in enumerate(self.other_maps):
self.single_plot(curr_map, self.wcs_other[i], v_lim=v_lim, ax_lim=ax_lim, SNRp_cut=SNRp_cut, SNRi_cut=SNRi_cut, savename=savename+'_'+str(i+1), **kwargs)
class crop_map(object):
"""
Class to interactively crop a map to desired Region of Interest
"""
def __init__(self, hdul, fig=None, ax=None):
#Get data
self.cropped=False
self.hdul = hdul
self.header = deepcopy(self.hdul[0].header)
self.wcs = WCS(self.header).deepcopy()
self.data = deepcopy(self.hdul[0].data)
try:
self.convert_flux = self.header['photflam']
except KeyError:
self.convert_flux = 1.
#Plot the map
plt.rcParams.update({'font.size': 12})
plt.ioff()
if fig is None:
self.fig = plt.figure(figsize=(15,15))
self.fig.suptitle("Click and drag to crop to desired Region of Interest.")
else:
self.fig = fig
if ax is None:
self.ax = self.fig.add_subplot(111, projection=self.wcs)
self.mask_alpha=1.
#Selection button
self.axapply = self.fig.add_axes([0.80, 0.01, 0.1, 0.04])
self.bapply = Button(self.axapply, 'Apply')
self.axreset = self.fig.add_axes([0.60, 0.01, 0.1, 0.04])
self.breset = Button(self.axreset, 'Reset')
self.embedded = False
else:
self.ax = ax
self.mask_alpha = 0.75
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
button=[1])
self.embedded = True
self.display()
plt.ion()
self.extent = np.array([0.,self.data.shape[0],0., self.data.shape[1]])
self.center = np.array(self.data.shape)/2
self.RSextent = deepcopy(self.extent)
self.RScenter = deepcopy(self.center)
plt.show()
def display(self, data=None, wcs=None, convert_flux=None):
if data is None:
data = self.data
if wcs is None:
wcs = self.wcs
if convert_flux is None:
convert_flux = self.convert_flux
vmin, vmax = 0., np.max(data[data > 0.]*convert_flux)
if hasattr(self, 'im'):
self.im.remove()
self.im = self.ax.imshow(data*convert_flux, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno', alpha=self.mask_alpha, origin='lower')
if hasattr(self, 'cr'):
self.cr[0].set_data(*wcs.wcs.crpix)
else:
self.cr = self.ax.plot(*wcs.wcs.crpix, 'r+')
self.fig.canvas.draw_idle()
return self.im
@property
def crpix_in_RS(self):
crpix = self.wcs.wcs.crpix
x_lim, y_lim = self.RSextent[:2], self.RSextent[2:]
if (crpix[0] > x_lim[0] and crpix[0] < x_lim[1]):
if (crpix[1] > y_lim[0] and crpix[1] < y_lim[1]):
return True
return False
def reset_crop(self, event):
self.ax.reset_wcs(self.wcs)
if hasattr(self, 'hdul_crop'):
del self.hdul_crop, self.data_crop
self.display()
if self.fig.canvas.manager.toolbar.mode == '':
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
button=[1])
self.RSextent = deepcopy(self.extent)
self.RScenter = deepcopy(self.center)
self.ax.set_xlim(*self.extent[:2])
self.ax.set_ylim(*self.extent[2:])
self.fig.canvas.draw_idle()
def onselect_crop(self, eclick, erelease) -> None:
# Obtain (xmin, xmax, ymin, ymax) values
self.RSextent = np.array(self.rect_selector.extents)
self.RScenter = np.array(self.rect_selector.center)
if self.embedded:
self.apply_crop(erelease)
def apply_crop(self, event):
if hasattr(self, 'hdul_crop'):
header = self.header_crop
data = self.data_crop
wcs = self.wcs_crop
else:
header = self.header
data = self.data
wcs = self.wcs
vertex = self.RSextent.astype(int)
shape = vertex[1::2] - vertex[0::2]
extent = np.array(self.im.get_extent())
shape_im = extent[1::2] - extent[0::2]
if (shape_im.astype(int) != shape).any() and (self.RSextent != self.extent).any():
#Update WCS and header in new cropped image
crpix = np.array(wcs.wcs.crpix)
self.wcs_crop = wcs.deepcopy()
self.wcs_crop.array_shape = shape
if self.crpix_in_RS:
self.wcs_crop.wcs.crpix = np.array(self.wcs_crop.wcs.crpix) - self.RSextent[::2]
else:
self.wcs_crop.wcs.crval = wcs.wcs_pix2world([self.RScenter],1)[0]
self.wcs_crop.wcs.crpix = self.RScenter-self.RSextent[::2]
# Crop dataset
self.data_crop = deepcopy(data[vertex[2]:vertex[3], vertex[0]:vertex[1]])
#Write cropped map to new HDUList
self.header_crop = deepcopy(header)
self.header_crop.update(self.wcs_crop.to_header())
self.hdul_crop = fits.HDUList([fits.PrimaryHDU(self.data_crop,self.header_crop)])
try:
convert_flux = self.header_crop['photflam']
except KeyError:
convert_flux = 1.
self.rect_selector.clear()
self.ax.reset_wcs(self.wcs_crop)
self.display(data=self.data_crop, wcs=self.wcs_crop, convert_flux=convert_flux)
xlim, ylim = self.RSextent[1::2]-self.RSextent[0::2]
self.ax.set_xlim(0,xlim)
self.ax.set_ylim(0,ylim)
if self.fig.canvas.manager.toolbar.mode == '':
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
button=[1])
self.fig.canvas.draw_idle()
def on_close(self, event) -> None:
if not hasattr(self, 'hdul_crop'):
self.hdul_crop = self.hdul
self.rect_selector.disconnect_events()
self.cropped = True
def crop(self) -> None:
if self.fig.canvas.manager.toolbar.mode == '':
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
button=[1])
self.bapply.on_clicked(self.apply_crop)
self.breset.on_clicked(self.reset_crop)
self.fig.canvas.mpl_connect('close_event', self.on_close)
plt.show()
def writeto(self, filename):
self.hdul_crop.writeto(filename,overwrite=True)
class crop_Stokes(crop_map):
"""
Class to interactively crop a polarization map to desired Region of Interest.
Inherit from crop_map.
"""
def apply_crop(self,event):
"""
Redefine apply_crop method for the Stokes HDUList.
"""
if hasattr(self, 'hdul_crop'):
hdul = self.hdul_crop
data = self.data_crop
wcs = self.wcs_crop
else:
hdul = self.hdul
data = self.data
wcs = self.wcs
vertex = self.RSextent.astype(int)
shape = vertex[1::2] - vertex[0::2]
extent = np.array(self.im.get_extent())
shape_im = extent[1::2] - extent[0::2]
if (shape_im.astype(int) != shape).any() and (self.RSextent != self.extent).any():
#Update WCS and header in new cropped image
self.hdul_crop = deepcopy(hdul)
crpix = np.array(wcs.wcs.crpix)
self.wcs_crop = wcs.deepcopy()
self.wcs_crop.array_shape = shape
if self.crpix_in_RS:
self.wcs_crop.wcs.crpix = np.array(self.wcs_crop.wcs.crpix) - self.RSextent[::2]
else:
self.wcs_crop.wcs.crval = wcs.wcs_pix2world([self.RScenter],1)[0]
self.wcs_crop.wcs.crpix = self.RScenter-self.RSextent[::2]
# Crop dataset
for dataset in self.hdul_crop:
if dataset.header['datatype']=='IQU_cov_matrix':
stokes_cov = np.zeros((3,3,shape[1],shape[0]))
for i in range(3):
for j in range(3):
stokes_cov[i,j] = deepcopy(dataset.data[i,j][vertex[2]:vertex[3], vertex[0]:vertex[1]])
dataset.data = stokes_cov
else:
dataset.data = deepcopy(dataset.data[vertex[2]:vertex[3], vertex[0]:vertex[1]])
dataset.header.update(self.wcs_crop.to_header())
try:
convert_flux = self.hdul_crop[0].header['photflam']
except KeyError:
convert_flux = 1.
self.data_crop = self.hdul_crop[0].data
self.rect_selector.clear()
if not self.embedded:
self.ax.reset_wcs(self.wcs_crop)
self.display(data=self.data_crop, wcs=self.wcs_crop, convert_flux=convert_flux)
xlim, ylim = self.RSextent[1::2]-self.RSextent[0::2]
self.ax.set_xlim(0,xlim)
self.ax.set_ylim(0,ylim)
else:
self.on_close(event)
if self.fig.canvas.manager.toolbar.mode == '':
self.rect_selector = RectangleSelector(self.ax, self.onselect_crop,
button=[1])
self.fig.canvas.draw_idle()
@property
def data_mask(self):
return self.hdul_crop[-1].data
class image_lasso_selector(object):
def __init__(self, img, fig=None, ax=None):
"""
img must have shape (X, Y)
"""
self.selected = False
self.img = img
self.vmin, self.vmax = 0., np.max(self.img[self.img>0.])
plt.ioff() # see https://github.com/matplotlib/matplotlib/issues/17013
if fig is None:
self.fig = plt.figure(figsize=(15,15))
else:
self.fig = fig
if ax is None:
self.ax = self.fig.gca()
self.mask_alpha = 1.
self.embedded = False
else:
self.ax = ax
self.mask_alpha = 0.1
self.embedded = True
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='equal', cmap='inferno',alpha=self.mask_alpha)
plt.ion()
lineprops = {'color': 'grey', 'linewidth': 1, 'alpha': 0.8}
self.lasso = LassoSelector(self.ax, self.onselect, props=lineprops, useblit=False)
self.lasso.set_visible(True)
pix_x = np.arange(self.img.shape[0])
pix_y = np.arange(self.img.shape[1])
xv, yv = np.meshgrid(pix_y,pix_x)
self.pix = np.vstack( (xv.flatten(), yv.flatten()) ).T
self.fig.canvas.mpl_connect('close_event', self.on_close)
plt.show()
def on_close(self, event=None) -> None:
if not hasattr(self, 'mask'):
self.mask = np.zeros(self.img.shape[:2],dtype=bool)
self.lasso.disconnect_events()
self.selected = True
def onselect(self, verts):
self.verts = verts
p = Path(verts)
self.indices = p.contains_points(self.pix, radius=0).reshape(self.img.shape[:2])
self.update_mask()
def update_mask(self):
self.displayed.remove()
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='equal', cmap='inferno',alpha=self.mask_alpha)
array = self.displayed.get_array().data
self.mask = np.zeros(self.img.shape[:2],dtype=bool)
self.mask[self.indices] = True
if hasattr(self, 'cont'):
for coll in self.cont.collections:
coll.remove()
self.cont = self.ax.contour(self.mask.astype(float),levels=[0.5], colors='white', linewidths=1)
if not self.embedded:
self.displayed.set_data(array)
self.fig.canvas.draw_idle()
else:
self.on_close()
class aperture(object):
def __init__(self, img, cdelt=np.array([1.,1.]), radius=1., fig=None, ax=None):
"""
img must have shape (X, Y)
"""
self.selected = False
self.img = img
self.vmin, self.vmax = 0., np.max(self.img[self.img>0.])
plt.ioff() # see https://github.com/matplotlib/matplotlib/issues/17013
if fig is None:
self.fig = plt.figure(figsize=(15,15))
else:
self.fig = fig
if ax is None:
self.ax = self.fig.gca()
self.mask_alpha = 1.
self.embedded = False
else:
self.ax = ax
self.mask_alpha = 0.1
self.embedded = True
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='equal', cmap='inferno',alpha=self.mask_alpha)
plt.ion()
xx, yy = np.indices(self.img.shape)
self.pix = np.vstack( (xx.flatten(), yy.flatten()) ).T
self.x0, self.y0 = np.array(self.img.shape)/2.
if np.abs(cdelt).max() != 1.:
self.cdelt = cdelt
self.radius = radius/np.abs(self.cdelt).max()/3600.
self.circ = Circle((self.x0, self.y0), self.radius, alpha=0.8, ec='grey',fc='none')
self.ax.add_patch(self.circ)
self.fig.canvas.mpl_connect('button_press_event', self.on_press)
self.fig.canvas.mpl_connect('button_release_event', self.on_release)
self.fig.canvas.mpl_connect('motion_notify_event', self.on_move)
self.fig.canvas.mpl_connect('close_event', self.on_close)
self.x0, self.y0 = self.circ.center
self.pressevent = None
plt.show()
def on_close(self, event=None) -> None:
if not hasattr(self, 'mask'):
self.mask = np.zeros(self.img.shape[:2],dtype=bool)
self.selected = True
def on_press(self, event):
if event.inaxes != self.ax:
return
if not self.circ.contains(event)[0]:
return
self.pressevent = event
def on_release(self, event):
self.pressevent = None
self.x0, self.y0 = self.circ.center
self.update_mask()
def on_move(self, event):
if self.pressevent is None or event.inaxes != self.pressevent.inaxes:
return
dx = event.xdata - self.pressevent.xdata
dy = event.ydata - self.pressevent.ydata
self.circ.center = self.x0 + dx, self.y0 + dy
self.fig.canvas.draw_idle()
def update_radius(self, radius):
self.radius = radius/np.abs(self.cdelt).max()/3600
self.circ.set_radius(self.radius)
self.fig.canvas.draw_idle()
def update_mask(self):
if hasattr(self, 'displayed'):
try:
self.displayed.remove()
except:
return
self.displayed = self.ax.imshow(self.img, vmin=self.vmin, vmax=self.vmax, aspect='equal', cmap='inferno',alpha=self.mask_alpha)
array = self.displayed.get_array().data
yy, xx = np.indices(self.img.shape[:2])
x0, y0 = self.circ.center
self.mask = np.sqrt((xx-x0)**2+(yy-y0)**2) < self.radius
if hasattr(self, 'cont'):
for coll in self.cont.collections:
try:
coll.remove()
except:
return
self.cont = self.ax.contour(self.mask.astype(float),levels=[0.5], colors='white', linewidths=1)
if not self.embedded:
self.displayed.set_data(array)
self.fig.canvas.draw_idle()
else:
self.on_close()
class pol_map(object):
"""
Class to interactively study polarization maps.
"""
def __init__(self, Stokes, SNRp_cut=3., SNRi_cut=30., flux_lim=None, selection=None):
if type(Stokes) == str:
Stokes = fits.open(Stokes)
self.Stokes = deepcopy(Stokes)
self.SNRp_cut = SNRp_cut
self.SNRi_cut = SNRi_cut
self.flux_lim = flux_lim
self.SNRi = deepcopy(self.SNRi_cut)
self.SNRp = deepcopy(self.SNRp_cut)
self.region = None
self.data = None
self.display_selection = selection
self.vec_scale = 2.
#Get data
self.targ = self.Stokes[0].header['targname']
self.pivot_wav = self.Stokes[0].header['photplam']
self.convert_flux = self.Stokes[0].header['photflam']
#Create figure
plt.rcParams.update({'font.size': 10})
self.fig = plt.figure(figsize=(10,10))
self.fig.subplots_adjust(hspace=0, wspace=0, right=0.88)
self.ax = self.fig.add_subplot(111,projection=self.wcs)
self.ax_cosmetics()
self.cbar_ax = self.fig.add_axes([0.925, 0.13, 0.01, 0.74])
#Display selected data (Default to total flux)
self.display()
#Display polarization vectors in SNR_cut
self.pol_vector()
#Display integrated values in ROI
self.pol_int()
#Set axes for sliders (SNRp_cut, SNRi_cut)
ax_I_cut = self.fig.add_axes([0.125, 0.080, 0.35, 0.01])
ax_P_cut = self.fig.add_axes([0.125, 0.055, 0.35, 0.01])
ax_vec_sc = self.fig.add_axes([0.300, 0.030, 0.175, 0.01])
ax_snr_reset = self.fig.add_axes([0.125, 0.020, 0.05, 0.02])
SNRi_max = np.max(self.I[self.IQU_cov[0,0]>0.]/np.sqrt(self.IQU_cov[0,0][self.IQU_cov[0,0]>0.]))
SNRp_max = np.max(self.P[self.s_P>0.]/self.s_P[self.s_P > 0.])
s_I_cut = Slider(ax_I_cut,r"$SNR^{I}_{cut}$",1.,int(SNRi_max*0.95),valstep=1,valinit=self.SNRi_cut)
s_P_cut = Slider(ax_P_cut,r"$SNR^{P}_{cut}$",1.,int(SNRp_max*0.95),valstep=1,valinit=self.SNRp_cut)
s_vec_sc = Slider(ax_vec_sc,r"Vectors scale",1.,10.,valstep=1,valinit=self.vec_scale)
b_snr_reset = Button(ax_snr_reset,"Reset")
b_snr_reset.label.set_fontsize(8)
def update_snri(val):
self.SNRi = val
self.pol_vector()
self.pol_int()
self.fig.canvas.draw_idle()
def update_snrp(val):
self.SNRp = val
self.pol_vector()
self.pol_int()
self.fig.canvas.draw_idle()
def update_vecsc(val):
self.vec_scale = val
self.pol_vector()
self.ax_cosmetics()
self.fig.canvas.draw_idle()
def reset_snr(event):
s_I_cut.reset()
s_P_cut.reset()
s_vec_sc.reset()
s_I_cut.on_changed(update_snri)
s_P_cut.on_changed(update_snrp)
s_vec_sc.on_changed(update_vecsc)
b_snr_reset.on_clicked(reset_snr)
#Set axe for Aperture selection
ax_aper = self.fig.add_axes([0.55, 0.040, 0.05, 0.02])
ax_aper_reset = self.fig.add_axes([0.605, 0.040, 0.05, 0.02])
ax_aper_radius = self.fig.add_axes([0.55, 0.020, 0.10, 0.01])
self.selected = False
b_aper = Button(ax_aper,"Aperture")
b_aper.label.set_fontsize(8)
b_aper_reset = Button(ax_aper_reset,"Reset")
b_aper_reset.label.set_fontsize(8)
s_aper_radius = Slider(ax_aper_radius, r"$R_{aper}$", np.ceil(self.wcs.wcs.cdelt.max()/1.33*3.6e5)/1e2, 3.5, valstep=1e-2, valinit=1.)
def select_aperture(event):
if self.data is None:
self.data = self.Stokes[0].data
if self.selected:
self.selected = False
self.select_instance.update_mask()
self.region = deepcopy(self.select_instance.mask.astype(bool))
self.select_instance.displayed.remove()
for coll in self.select_instance.cont.collections[:]:
coll.remove()
self.select_instance.circ.set_visible(False)
self.set_data_mask(deepcopy(self.region))
self.pol_int()
else:
self.selected = True
self.region = None
self.select_instance = aperture(self.data, fig=self.fig, ax=self.ax, cdelt=self.wcs.wcs.cdelt, radius=s_aper_radius.val)
self.select_instance.circ.set_visible(True)
self.fig.canvas.draw_idle()
def update_aperture(val):
if hasattr(self, 'select_instance'):
if hasattr(self.select_instance, 'radius'):
self.select_instance.update_radius(val)
else:
self.selected = True
self.select_instance = aperture(self.data, fig=self.fig, ax=self.ax, cdelt=self.wcs.wcs.cdelt, radius=val)
else:
self.selected = True
self.select_instance = aperture(self.data, fig=self.fig, ax=self.ax, cdelt=self.wcs.wcs.cdelt, radius=val)
self.fig.canvas.draw_idle()
def reset_aperture(event):
self.region = None
s_aper_radius.reset()
self.pol_int()
self.fig.canvas.draw_idle()
b_aper.on_clicked(select_aperture)
b_aper_reset.on_clicked(reset_aperture)
s_aper_radius.on_changed(update_aperture)
#Set axe for ROI selection
ax_select = self.fig.add_axes([0.55, 0.070, 0.05, 0.02])
ax_roi_reset = self.fig.add_axes([0.605, 0.070, 0.05, 0.02])
b_select = Button(ax_select,"Select")
b_select.label.set_fontsize(8)
self.selected = False
b_roi_reset = Button(ax_roi_reset,"Reset")
b_roi_reset.label.set_fontsize(8)
def select_roi(event):
if self.data is None:
self.data = self.Stokes[0].data
if self.selected:
self.selected = False
self.region = deepcopy(self.select_instance.mask.astype(bool))
self.select_instance.displayed.remove()
for coll in self.select_instance.cont.collections:
coll.remove()
self.select_instance.lasso.set_active(False)
self.set_data_mask(deepcopy(self.region))
self.pol_int()
else:
self.selected = True
self.region = None
self.select_instance = image_lasso_selector(self.data, fig=self.fig, ax=self.ax)
self.select_instance.lasso.set_active(True)
k = 0
while not self.select_instance.selected and k<60:
self.fig.canvas.start_event_loop(timeout=1)
k+=1
select_roi(event)
self.fig.canvas.draw_idle()
def reset_roi(event):
self.region = None
self.pol_int()
self.fig.canvas.draw_idle()
b_select.on_clicked(select_roi)
b_roi_reset.on_clicked(reset_roi)
#Set axe for crop Stokes
ax_crop = self.fig.add_axes([0.70, 0.070, 0.05, 0.02])
ax_crop_reset = self.fig.add_axes([0.755, 0.070, 0.05, 0.02])
b_crop = Button(ax_crop,"Crop")
b_crop.label.set_fontsize(8)
self.cropped = False
b_crop_reset = Button(ax_crop_reset,"Reset")
b_crop_reset.label.set_fontsize(8)
def crop(event):
if self.cropped:
self.cropped = False
self.crop_instance.im.remove()
self.crop_instance.cr.pop(0).remove()
self.crop_instance.rect_selector.set_active(False)
self.Stokes = self.crop_instance.hdul_crop
self.region = deepcopy(self.data_mask.astype(bool))
self.pol_int()
self.ax.reset_wcs(self.wcs)
self.ax_cosmetics()
self.display()
self.ax.set_xlim(0,self.I.shape[1])
self.ax.set_ylim(0,self.I.shape[0])
self.pol_vector()
else:
self.cropped = True
self.crop_instance = crop_Stokes(self.Stokes, fig=self.fig, ax=self.ax)
self.crop_instance.rect_selector.set_active(True)
k = 0
while not self.crop_instance.cropped and k<60:
self.fig.canvas.start_event_loop(timeout=1)
k+=1
crop(event)
self.fig.canvas.draw_idle()
def reset_crop(event):
self.Stokes = deepcopy(Stokes)
self.region = None
self.pol_int()
self.ax.reset_wcs(self.wcs)
self.ax_cosmetics()
self.display()
self.pol_vector()
b_crop.on_clicked(crop)
b_crop_reset.on_clicked(reset_crop)
#Set axe for saving plot
ax_save = self.fig.add_axes([0.850, 0.070, 0.05, 0.02])
b_save = Button(ax_save, "Save")
b_save.label.set_fontsize(8)
ax_text_save = self.fig.add_axes([0.3, 0.020, 0.5, 0.025],visible=False)
text_save = TextBox(ax_text_save, "Save to:", initial='')
def saveplot(event):
ax_text_save.set(visible=True)
ax_snr_reset.set(visible=False)
ax_vec_sc.set(visible=False)
ax_save.set(visible=False)
ax_dump.set(visible=False)
self.fig.canvas.draw_idle()
b_save.on_clicked(saveplot)
def submit_save(expression):
ax_text_save.set(visible=False)
if expression != '':
plt.rcParams.update({'font.size': 15})
save_fig = plt.figure(figsize=(15,15))
save_ax = save_fig.add_subplot(111, projection=self.wcs)
self.ax_cosmetics(ax=save_ax)
self.display(fig=save_fig,ax=save_ax)
self.pol_vector(fig=save_fig,ax=save_ax)
self.pol_int(fig=save_fig,ax=save_ax)
save_fig.suptitle(r"{0:s} with $SNR_{{p}} \geq$ {1:d} and $SNR_{{I}} \geq$ {2:d}".format(self.targ, int(self.SNRp), int(self.SNRi)))
if not expression[-4:] in ['.png', '.jpg']:
expression += '.pdf'
save_fig.savefig(expression, bbox_inches='tight', dpi=200)
plt.close(save_fig)
text_save.set_val('')
ax_snr_reset.set(visible=True)
ax_vec_sc.set(visible=True)
ax_save.set(visible=True)
ax_dump.set(visible=True)
plt.rcParams.update({'font.size': 10})
self.fig.canvas.draw_idle()
text_save.on_submit(submit_save)
#Set axe for data dump
ax_dump = self.fig.add_axes([0.850, 0.045, 0.05, 0.02])
b_dump = Button(ax_dump, "Dump")
b_dump.label.set_fontsize(8)
ax_text_dump = self.fig.add_axes([0.3, 0.020, 0.5, 0.025],visible=False)
text_dump = TextBox(ax_text_dump, "Dump to:", initial='')
def dump(event):
ax_text_dump.set(visible=True)
ax_snr_reset.set(visible=False)
ax_vec_sc.set(visible=False)
ax_save.set(visible=False)
ax_dump.set(visible=False)
self.fig.canvas.draw_idle()
shape = np.array(self.I.shape)
center = (shape/2).astype(int)
cdelt_arcsec = self.wcs.wcs.cdelt*3600
xx, yy = np.indices(shape)
x, y = (xx-center[0])*cdelt_arcsec[0], (yy-center[1])*cdelt_arcsec[1]
P, PA = np.zeros(shape), np.zeros(shape)
P[self.cut] = self.P[self.cut]
PA[self.cut] = self.PA[self.cut]
dump_list = []
for i in range(shape[0]):
for j in range(shape[1]):
dump_list.append([x[i,j], y[i,j], self.I[i,j]*self.convert_flux, self.Q[i,j]*self.convert_flux, self.U[i,j]*self.convert_flux, P[i,j], PA[i,j]])
self.data_dump = np.array(dump_list)
b_dump.on_clicked(dump)
def submit_dump(expression):
ax_text_dump.set(visible=False)
if expression != '':
if not expression[-4:] in ['.txt', '.dat']:
expression += '.txt'
np.savetxt(expression, self.data_dump)
text_dump.set_val('')
ax_snr_reset.set(visible=True)
ax_vec_sc.set(visible=True)
ax_save.set(visible=True)
ax_dump.set(visible=True)
self.fig.canvas.draw_idle()
text_dump.on_submit(submit_dump)
#Set axes for display buttons
ax_tf = self.fig.add_axes([0.925, 0.105, 0.05, 0.02])
ax_pf = self.fig.add_axes([0.925, 0.085, 0.05, 0.02])
ax_p = self.fig.add_axes([0.925, 0.065, 0.05, 0.02])
ax_pa = self.fig.add_axes([0.925, 0.045, 0.05, 0.02])
ax_snri = self.fig.add_axes([0.925, 0.025, 0.05, 0.02])
ax_snrp = self.fig.add_axes([0.925, 0.005, 0.05, 0.02])
b_tf = Button(ax_tf,r"$F_{\lambda}$")
b_pf = Button(ax_pf,r"$F_{\lambda} \cdot P$")
b_p = Button(ax_p,r"$P$")
b_pa = Button(ax_pa,r"$\theta_{P}$")
b_snri = Button(ax_snri,r"$I / \sigma_{I}$")
b_snrp = Button(ax_snrp,r"$P / \sigma_{P}$")
def d_tf(event):
self.display_selection = 'total_flux'
self.display()
self.pol_int()
b_tf.on_clicked(d_tf)
def d_pf(event):
self.display_selection = 'pol_flux'
self.display()
self.pol_int()
b_pf.on_clicked(d_pf)
def d_p(event):
self.display_selection = 'pol_deg'
self.display()
self.pol_int()
b_p.on_clicked(d_p)
def d_pa(event):
self.display_selection = 'pol_ang'
self.display()
self.pol_int()
b_pa.on_clicked(d_pa)
def d_snri(event):
self.display_selection = 'snri'
self.display()
self.pol_int()
b_snri.on_clicked(d_snri)
def d_snrp(event):
self.display_selection = 'snrp'
self.display()
self.pol_int()
b_snrp.on_clicked(d_snrp)
plt.show()
@property
def wcs(self):
return deepcopy(WCS(self.Stokes[0].header))
@property
def I(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='I_stokes' for i in range(len(self.Stokes))])].data
@property
def Q(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Q_stokes' for i in range(len(self.Stokes))])].data
@property
def U(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='U_stokes' for i in range(len(self.Stokes))])].data
@property
def IQU_cov(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='IQU_cov_matrix' for i in range(len(self.Stokes))])].data
@property
def P(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Pol_deg_debiased' for i in range(len(self.Stokes))])].data
@property
def s_P(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Pol_deg_err' for i in range(len(self.Stokes))])].data
@property
def PA(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Pol_ang' for i in range(len(self.Stokes))])].data
@property
def data_mask(self):
return self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Data_mask' for i in range(len(self.Stokes))])].data
def set_data_mask(self, mask):
self.Stokes[np.argmax([self.Stokes[i].header['datatype']=='Data_mask' for i in range(len(self.Stokes))])].data = mask.astype(float)
@property
def cut(self):
s_I = np.sqrt(self.IQU_cov[0,0])
SNRp_mask, SNRi_mask = np.zeros(self.P.shape).astype(bool), np.zeros(self.I.shape).astype(bool)
SNRp_mask[self.s_P > 0.] = self.P[self.s_P > 0.] / self.s_P[self.s_P > 0.] > self.SNRp
SNRi_mask[s_I > 0.] = self.I[s_I > 0.] / s_I[s_I > 0.] > self.SNRi
return np.logical_and(SNRi_mask,SNRp_mask)
def ax_cosmetics(self, ax=None):
if ax is None:
ax = self.ax
ax.set_facecolor('black')
ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
ax.coords[0].set_axislabel('Right Ascension (J2000)')
ax.coords[0].set_axislabel_position('t')
ax.coords[0].set_ticklabel_position('t')
ax.coords[1].set_axislabel('Declination (J2000)')
ax.coords[1].set_axislabel_position('l')
ax.coords[1].set_ticklabel_position('l')
ax.axis('equal')
#Display scales and orientation
fontprops = fm.FontProperties(size=14)
px_size = self.wcs.wcs.cdelt[0]*3600.
if hasattr(self,'px_sc'):
self.px_sc.remove()
self.px_sc = AnchoredSizeBar(ax.transData, 1./px_size, '1 arcsec', 3, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='white', fontproperties=fontprops)
ax.add_artist(self.px_sc)
if hasattr(self,'pol_sc'):
self.pol_sc.remove()
self.pol_sc = AnchoredSizeBar(ax.transData, self.vec_scale, r"$P$= 100%", 4, pad=0.5, sep=5, borderpad=0.5, frameon=False, size_vertical=0.005, color='white', fontproperties=fontprops)
ax.add_artist(self.pol_sc)
if hasattr(self,'north_dir'):
self.north_dir.remove()
self.north_dir = AnchoredDirectionArrows(ax.transAxes, "E", "N", length=-0.08, fontsize=0.025, loc=1, aspect_ratio=-1, sep_y=0.01, sep_x=0.01, back_length=0., head_length=10., head_width=10., angle=-self.Stokes[0].header['orientat'], color='white', text_props={'ec': None, 'fc': 'w', 'alpha': 1, 'lw': 0.4}, arrow_props={'ec': None,'fc':'w','alpha': 1,'lw': 1})
ax.add_artist(self.north_dir)
def display(self, fig=None, ax=None, flux_lim=None):
norm = None
if self.display_selection is None:
self.display_selection = "total_flux"
if flux_lim is None:
flux_lim = self.flux_lim
if self.display_selection.lower() in ['total_flux']:
self.data = self.I*self.convert_flux
if flux_lim is None:
vmin, vmax = 1./2.*np.median(self.data[self.data > 0.]), np.max(self.data[self.data > 0.])
else:
vmin, vmax = flux_lim
norm = LogNorm(vmin, vmax)
label = r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
elif self.display_selection.lower() in ['pol_flux']:
self.data = self.I*self.convert_flux*self.P
if flux_lim is None:
vmin, vmax = 1./2.*np.median(self.I[self.I > 0.]*self.convert_flux), np.max(self.I[self.I > 0.]*self.convert_flux)
else:
vmin, vmax = flux_lim
norm = LogNorm(vmin, vmax)
label = r"$F_{\lambda} \cdot P$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]"
elif self.display_selection.lower() in ['pol_deg']:
self.data = self.P*100.
vmin, vmax = 0., np.max(self.data[self.P > self.s_P])
label = r"$P$ [%]"
elif self.display_selection.lower() in ['pol_ang']:
self.data = princ_angle(self.PA)
vmin, vmax = 0, 180.
label = r"$\theta_{P}$ [°]"
elif self.display_selection.lower() in ['snri']:
s_I = np.sqrt(self.IQU_cov[0,0])
SNRi = np.zeros(self.I.shape)
SNRi[s_I > 0.] = self.I[s_I > 0.]/s_I[s_I > 0.]
self.data = SNRi
vmin, vmax = 0., np.max(self.data[self.data > 0.])
label = r"$I_{Stokes}/\sigma_{I}$"
elif self.display_selection.lower() in ['snrp']:
SNRp = np.zeros(self.P.shape)
SNRp[self.s_P > 0.] = self.P[self.s_P > 0.]/self.s_P[self.s_P > 0.]
self.data = SNRp
vmin, vmax = 0., np.max(self.data[self.data > 0.])
label = r"$P/\sigma_{P}$"
if fig is None:
fig = self.fig
if ax is None:
ax = self.ax
if hasattr(self, 'im'):
self.im.remove()
if not norm is None:
self.im = ax.imshow(self.data, norm=norm, aspect='equal', cmap='inferno')
else:
self.im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno')
self.cbar = plt.colorbar(self.im, cax=self.cbar_ax, label=label)
fig.canvas.draw_idle()
return self.im
else:
if not norm is None:
im = ax.imshow(self.data, norm=norm, aspect='equal', cmap='inferno')
else:
im = ax.imshow(self.data, vmin=vmin, vmax=vmax, aspect='equal', cmap='inferno')
ax.set_xlim(0,self.data.shape[1])
ax.set_ylim(0,self.data.shape[0])
plt.colorbar(im, pad=0.025, aspect=80, label=label)
fig.canvas.draw_idle()
def pol_vector(self, fig=None, ax=None):
P_cut = np.ones(self.P.shape)*np.nan
P_cut[self.cut] = self.P[self.cut]
X, Y = np.meshgrid(np.arange(self.I.shape[1]),np.arange(self.I.shape[0]))
XY_U, XY_V = P_cut*np.cos(np.pi/2. + self.PA*np.pi/180.), P_cut*np.sin(np.pi/2. + self.PA*np.pi/180.)
if fig is None:
fig = self.fig
if ax is None:
ax = self.ax
if hasattr(self, 'quiver'):
self.quiver.remove()
self.quiver = ax.quiver(X, Y, XY_U, XY_V, units='xy', scale=1./self.vec_scale, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.15, linewidth=0.5, color='white',edgecolor='black')
fig.canvas.draw_idle()
return self.quiver
else:
ax.quiver(X, Y, XY_U, XY_V, units='xy', scale=1./self.vec_scale, scale_units='xy', pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.15, linewidth=0.5, color='white',edgecolor='black')
fig.canvas.draw_idle()
def pol_int(self, fig=None, ax=None):
if self.region is None:
n_pix = self.I.size
s_I = np.sqrt(self.IQU_cov[0,0])
I_reg = self.I.sum()
I_reg_err = np.sqrt(n_pix)*np.sqrt(np.sum(s_I**2))
P_reg = self.Stokes[0].header['P_int']
P_reg_err = self.Stokes[0].header['P_int_err']
PA_reg = self.Stokes[0].header['PA_int']
PA_reg_err = self.Stokes[0].header['PA_int_err']
s_I = np.sqrt(self.IQU_cov[0,0])
s_Q = np.sqrt(self.IQU_cov[1,1])
s_U = np.sqrt(self.IQU_cov[2,2])
s_IQ = self.IQU_cov[0,1]
s_IU = self.IQU_cov[0,2]
s_QU = self.IQU_cov[1,2]
I_cut = self.I[self.cut].sum()
Q_cut = self.Q[self.cut].sum()
U_cut = self.U[self.cut].sum()
I_cut_err = np.sqrt(np.sum(s_I[self.cut]**2))
Q_cut_err = np.sqrt(np.sum(s_Q[self.cut]**2))
U_cut_err = np.sqrt(np.sum(s_U[self.cut]**2))
IQ_cut_err = np.sqrt(np.sum(s_IQ[self.cut]**2))
IU_cut_err = np.sqrt(np.sum(s_IU[self.cut]**2))
QU_cut_err = np.sqrt(np.sum(s_QU[self.cut]**2))
P_cut = np.sqrt(Q_cut**2+U_cut**2)/I_cut
P_cut_err = np.sqrt((Q_cut**2*Q_cut_err**2 + U_cut**2*U_cut_err**2 + 2.*Q_cut*U_cut*QU_cut_err)/(Q_cut**2 + U_cut**2) + ((Q_cut/I_cut)**2 + (U_cut/I_cut)**2)*I_cut_err**2 - 2.*(Q_cut/I_cut)*IQ_cut_err - 2.*(U_cut/I_cut)*IU_cut_err)/I_cut
PA_cut = princ_angle(np.degrees((1./2.)*np.arctan2(U_cut,Q_cut)))
PA_cut_err = princ_angle(np.degrees((1./(2.*(Q_cut**2+U_cut**2)))*np.sqrt(U_cut**2*Q_cut_err**2 + Q_cut**2*U_cut_err**2 - 2.*Q_cut*U_cut*QU_cut_err)))
else:
n_pix = self.I[self.region].size
s_I = np.sqrt(self.IQU_cov[0,0])
s_Q = np.sqrt(self.IQU_cov[1,1])
s_U = np.sqrt(self.IQU_cov[2,2])
s_IQ = self.IQU_cov[0,1]
s_IU = self.IQU_cov[0,2]
s_QU = self.IQU_cov[1,2]
I_reg = self.I[self.region].sum()
Q_reg = self.Q[self.region].sum()
U_reg = self.U[self.region].sum()
I_reg_err = np.sqrt(np.sum(s_I[self.region]**2))
Q_reg_err = np.sqrt(np.sum(s_Q[self.region]**2))
U_reg_err = np.sqrt(np.sum(s_U[self.region]**2))
IQ_reg_err = np.sqrt(np.sum(s_IQ[self.region]**2))
IU_reg_err = np.sqrt(np.sum(s_IU[self.region]**2))
QU_reg_err = np.sqrt(np.sum(s_QU[self.region]**2))
P_reg = np.sqrt(Q_reg**2+U_reg**2)/I_reg
P_reg_err = np.sqrt((Q_reg**2*Q_reg_err**2 + U_reg**2*U_reg_err**2 + 2.*Q_reg*U_reg*QU_reg_err)/(Q_reg**2 + U_reg**2) + ((Q_reg/I_reg)**2 + (U_reg/I_reg)**2)*I_reg_err**2 - 2.*(Q_reg/I_reg)*IQ_reg_err - 2.*(U_reg/I_reg)*IU_reg_err)/I_reg
PA_reg = princ_angle((90./np.pi)*np.arctan2(U_reg,Q_reg))
PA_reg_err = (90./(np.pi*(Q_reg**2+U_reg**2)))*np.sqrt(U_reg**2*Q_reg_err**2 + Q_reg**2*U_reg_err**2 - 2.*Q_reg*U_reg*QU_reg_err)
new_cut = np.logical_and(self.region, self.cut)
I_cut = self.I[new_cut].sum()
Q_cut = self.Q[new_cut].sum()
U_cut = self.U[new_cut].sum()
I_cut_err = np.sqrt(np.sum(s_I[new_cut]**2))
Q_cut_err = np.sqrt(np.sum(s_Q[new_cut]**2))
U_cut_err = np.sqrt(np.sum(s_U[new_cut]**2))
IQ_cut_err = np.sqrt(np.sum(s_IQ[new_cut]**2))
IU_cut_err = np.sqrt(np.sum(s_IU[new_cut]**2))
QU_cut_err = np.sqrt(np.sum(s_QU[new_cut]**2))
P_cut = np.sqrt(Q_cut**2+U_cut**2)/I_cut
P_cut_err = np.sqrt((Q_cut**2*Q_cut_err**2 + U_cut**2*U_cut_err**2 + 2.*Q_cut*U_cut*QU_cut_err)/(Q_cut**2 + U_cut**2) + ((Q_cut/I_cut)**2 + (U_cut/I_cut)**2)*I_cut_err**2 - 2.*(Q_cut/I_cut)*IQ_cut_err - 2.*(U_cut/I_cut)*IU_cut_err)/I_cut
PA_cut = 360.-princ_angle((90./np.pi)*np.arctan2(U_cut,Q_cut))
PA_cut_err = (90./(np.pi*(Q_cut**2+U_cut**2)))*np.sqrt(U_cut**2*Q_cut_err**2 + Q_cut**2*U_cut_err**2 - 2.*Q_cut*U_cut*QU_cut_err)
if hasattr(self, 'cont'):
for coll in self.cont.collections:
try:
coll.remove()
except:
return
del self.cont
if fig is None:
fig = self.fig
if ax is None:
ax = self.ax
if hasattr(self, 'an_int'):
self.an_int.remove()
self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.93), xycoords='axes fraction',path_effects=[pe.withStroke(linewidth=0.5,foreground='k')])
#self.an_int = ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.85), xycoords='axes fraction',path_effects=[pe.withStroke(linewidth=0.5,foreground='k')])
if not self.region is None:
self.cont = ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
fig.canvas.draw_idle()
return self.an_int
else:
ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.94), xycoords='axes fraction',path_effects=[pe.withStroke(linewidth=0.5,foreground='k')])
#ax.annotate(r"$F_{{\lambda}}^{{int}}$({0:.0f} $\AA$) = {1} $ergs \cdot cm^{{-2}} \cdot s^{{-1}} \cdot \AA^{{-1}}$".format(self.pivot_wav,sci_not(I_reg*self.convert_flux,I_reg_err*self.convert_flux,2))+"\n"+r"$P^{{int}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_reg*100.,np.ceil(P_reg_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{int}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_reg,np.ceil(PA_reg_err*10.)/10.)+"\n"+r"$P^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} %".format(P_cut*100.,np.ceil(P_cut_err*1000.)/10.)+"\n"+r"$\theta_{{P}}^{{cut}}$ = {0:.1f} $\pm$ {1:.1f} °".format(PA_cut,np.ceil(PA_cut_err*10.)/10.), color='white', fontsize=12, xy=(0.01, 0.90), xycoords='axes fraction',path_effects=[pe.withStroke(linewidth=0.5,foreground='k')])
if not self.region is None:
ax.contour(self.region.astype(float),levels=[0.5], colors='white', linewidths=0.8)
fig.canvas.draw_idle()