Files
FOC_Reduction/src/lib/deconvolve.py
Thibault Barnouin 3117a2ee3e Initial commit
2021-05-27 19:21:58 +02:00

123 lines
3.9 KiB
Python
Executable File

"""
Library function for the implementation of Richardson-Lucy deconvolution algorithm.
"""
import numpy as np
from scipy.signal import convolve
def richardson_lucy(image, psf, iterations=20, clip=True, filter_epsilon=None):
"""
Richardson-Lucy deconvolution algorithm.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
----------
References
[1] https://doi.org/10.1364/JOSA.62.000055
[2] https://en.wikipedia.org/wiki/Richardson%E2%80%93Lucy_deconvolution
"""
float_type = np.promote_types(image.dtype, np.float32)
image = image.astype(float_type, copy=False)
psf = psf.astype(float_type, copy=False)
im_deconv = np.full(image.shape, 0.5, dtype=float_type)
psf_mirror = np.flip(psf)
for _ in range(iterations):
conv = convolve(im_deconv, psf, mode='same')
if filter_epsilon:
relative_blur = np.where(conv < filter_epsilon, 0, image / conv)
else:
relative_blur = image / conv
im_deconv *= convolve(relative_blur, psf_mirror, mode='same')
if clip:
im_deconv[im_deconv > 1] = 1
im_deconv[im_deconv < -1] = -1
return im_deconv
def deconvolve_im(image, psf, iterations=20, clip=True, filter_epsilon=None):
"""
Prepare an image for deconvolution using Richardson-Lucy algorithm and
return results.
----------
Inputs:
image : numpy.darray
Input degraded image (can be N dimensional) of floats between 0 and 1.
psf : numpy.darray
The point spread function.
iterations : int, optional
Number of iterations. This parameter plays the role of
regularisation.
clip : boolean, optional
True by default. If true, pixel value of the result above 1 or
under -1 are thresholded for skimage pipeline compatibility.
filter_epsilon: float, optional
Value below which intermediate results become 0 to avoid division
by small numbers.
----------
Returns:
im_deconv : ndarray
The deconvolved image.
"""
# Normalize image to highest pixel value
pxmax = image[np.isfinite(image)].max()
if pxmax == 0.:
raise ValueError("Invalid image")
norm_image = image/pxmax
# Deconvolve normalized image
norm_deconv = richardson_lucy(image=norm_image, psf=psf, iterations=iterations,
clip=clip, filter_epsilon=filter_epsilon)
# Output deconvolved image with original pxmax value
im_deconv = pxmax*norm_deconv
return im_deconv
def gaussian_psf(FWHM=1., shape=(5,5)):
"""
Define the gaussian Point-Spread-Function of chosen shape and FWHM.
----------
Inputs:
FWHM : float, optional
The Full Width at Half Maximum of the desired gaussian function for the
PSF in pixel increments.
Defaults to 1.
shape : tuple, optional
The shape of the PSF kernel. Must be of dimension 2.
Defaults to (5,5).
----------
Returns:
kernel : numpy.ndarray
Kernel containing the weights of the desired gaussian PSF.
"""
# Compute standard deviation from FWHM
stdev = FWHM/(2.*np.sqrt(2.*np.log(2.)))
# Create kernel of desired shape
xx, yy = np.indices(shape)
x0, y0 = (np.array(shape)-1.)/2.
kernel = np.exp(-0.5*((xx-x0)**2+(yy-y0)**2)/stdev**2)
return kernel