Files
FOC_Reduction/package/src/comparison_Kishimoto.py

215 lines
12 KiB
Python
Executable File

#!/usr/bin/python
from src.lib.background import gauss, bin_centers
from src.lib.deconvolve import zeropad
from src.lib.reduction import align_data
from src.lib.plots import princ_angle
from matplotlib.colors import LogNorm
from os.path import join as path_join
from astropy.io import fits
from astropy.wcs import WCS
from scipy.ndimage import shift
from scipy.optimize import curve_fit
import numpy as np
import matplotlib.pyplot as plt
root_dir = path_join('/home/t.barnouin/Documents/Thesis/HST')
root_dir_K = path_join(root_dir, 'Kishimoto', 'output')
root_dir_S = path_join(root_dir, 'FOC_Reduction', 'output')
root_dir_data_S = path_join(root_dir, 'FOC_Reduction', 'data', 'NGC1068', '5144')
root_dir_plot_S = path_join(root_dir, 'FOC_Reduction', 'plots', 'NGC1068', '5144', 'notaligned')
filename_S = "NGC1068_FOC_b10.00pixel_not_aligned.fits"
plt.rcParams.update({'font.size': 15})
SNRi_cut = 30.
SNRp_cut = 3.
data_K = {}
data_S = {}
for d, i in zip(['I', 'Q', 'U', 'P', 'PA', 'sI', 'sQ', 'sU', 'sP', 'sPA'], [0, 1, 2, 5, 8, (3, 0, 0), (3, 1, 1), (3, 2, 2), 6, 9]):
data_K[d] = np.loadtxt(path_join(root_dir_K, d+'.txt'))
with fits.open(path_join(root_dir_data_S, filename_S)) as f:
if not type(i) is int:
data_S[d] = np.sqrt(f[i[0]].data[i[1], i[2]])
else:
data_S[d] = f[i].data
if i == 0:
header = f[i].header
wcs = WCS(header)
convert_flux = header['photflam']
bkg_S = np.median(data_S['I'])/3
bkg_K = np.median(data_K['I'])/3
# zeropad data to get same size of array
shape = data_S['I'].shape
for d in data_K:
data_K[d] = zeropad(data_K[d], shape)
# shift array to get same information in same pixel
data_arr, error_ar, heads, data_msk, shifts, shifts_err = align_data(np.array([data_S['I'], data_K['I']]), [header, header], error_array=np.array(
[data_S['sI'], data_K['sI']]), background=np.array([bkg_S, bkg_K]), upsample_factor=10., ref_center='center', return_shifts=True)
for d in data_K:
data_K[d] = shift(data_K[d], shifts[1], order=1, cval=0.)
# compute pol components from shifted array
for d in [data_S, data_K]:
for i in d:
d[i][np.isnan(d[i])] = 0.
d['P'] = np.where(np.logical_and(np.isfinite(d['I']), d['I'] > 0.), np.sqrt(d['Q']**2+d['U']**2)/d['I'], 0.)
d['sP'] = np.where(np.logical_and(np.isfinite(d['I']), d['I'] > 0.), np.sqrt((d['Q']**2*d['sQ']**2+d['U']**2*d['sU']**2) /
(d['Q']**2+d['U']**2)+((d['Q']/d['I'])**2+(d['U']/d['I'])**2)*d['sI']**2)/d['I'], 0.)
d['d_P'] = np.where(np.logical_and(np.isfinite(d['P']), np.isfinite(d['sP'])), np.sqrt(d['P']**2-d['sP']**2), 0.)
d['PA'] = 0.5*np.arctan2(d['U'], d['Q'])+np.pi
d['SNRp'] = np.zeros(d['d_P'].shape)
d['SNRp'][d['sP'] > 0.] = d['d_P'][d['sP'] > 0.]/d['sP'][d['sP'] > 0.]
d['SNRi'] = np.zeros(d['I'].shape)
d['SNRi'][d['sI'] > 0.] = d['I'][d['sI'] > 0.]/d['sI'][d['sI'] > 0.]
d['mask'] = np.logical_and(d['SNRi'] > SNRi_cut, d['SNRp'] > SNRp_cut)
data_S['mask'], data_K['mask'] = np.logical_and(data_S['mask'], data_K['mask']), np.logical_and(data_S['mask'], data_K['mask'])
#
# Compute histogram of measured polarization in cut
#
bins = int(data_S['mask'].sum()/5)
bin_size = 1./bins
mod_p = np.linspace(0., 1., 300)
for d in [data_S, data_K]:
d['hist'], d['bin_edges'] = np.histogram(d['d_P'][d['mask']], bins=bins, range=(0., 1.))
d['binning'] = bin_centers(d['bin_edges'])
peak, bins_fwhm = d['binning'][np.argmax(d['hist'])], d['binning'][d['hist'] > d['hist'].max()/2.]
fwhm = bins_fwhm[1]-bins_fwhm[0]
p0 = [d['hist'].max(), peak, fwhm]
try:
popt, pcov = curve_fit(gauss, d['binning'], d['hist'], p0=p0)
except RuntimeError:
popt = p0
d['hist_chi2'] = np.sum((d['hist']-gauss(d['binning'], *popt))**2)/d['hist'].size
d['hist_popt'] = popt
fig_p, ax_p = plt.subplots(num="Polarization degree histogram", figsize=(10, 6), constrained_layout=True)
ax_p.errorbar(data_S['binning'], data_S['hist'], xerr=bin_size/2., fmt='b.', ecolor='b', label='P through this pipeline')
ax_p.plot(mod_p, gauss(mod_p, *data_S['hist_popt']), 'b--', label='mean = {1:.2f}, stdev = {2:.2f}'.format(*data_S['hist_popt']))
ax_p.errorbar(data_K['binning'], data_K['hist'], xerr=bin_size/2., fmt='r.', ecolor='r', label="P through Kishimoto's pipeline")
ax_p.plot(mod_p, gauss(mod_p, *data_K['hist_popt']), 'r--', label='mean = {1:.2f}, stdev = {2:.2f}'.format(*data_K['hist_popt']))
ax_p.set(xlabel="Polarization degree", ylabel="Counts", title="Histogram of polarization degree computed in the cut for both pipelines.")
ax_p.legend()
fig_p.savefig(path_join(root_dir_plot_S, "NGC1068_K_pol_deg.png"), bbox_inches="tight", dpi=300)
#
# Compute angular difference between the maps in cut
#
dtheta = np.where(data_S['mask'], 0.5*np.arctan((np.sin(2*data_S['PA'])*np.cos(2*data_K['PA'])-np.cos(2*data_S['PA']) *
np.cos(2*data_K['PA']))/(np.cos(2*data_S['PA'])*np.cos(2*data_K['PA'])+np.cos(2*data_S['PA'])*np.sin(2*data_K['PA']))), np.nan)
fig_pa = plt.figure(num="Polarization degree alignement")
ax_pa = fig_pa.add_subplot(111, projection=wcs)
cbar_ax_pa = fig_pa.add_axes([0.88, 0.12, 0.01, 0.75])
ax_pa.set_title(r"Degree of alignement $\zeta$ of the polarization angles from the 2 pipelines in the cut")
im_pa = ax_pa.imshow(np.cos(2*dtheta), vmin=-1., vmax=1., origin='lower', cmap='bwr', label=r"$\zeta$ between this pipeline and Kishimoto's")
cbar_pa = plt.colorbar(im_pa, cax=cbar_ax_pa, label=r"$\zeta = \cos\left( 2 \cdot \delta\theta_P \right)$")
ax_pa.coords[0].set_axislabel('Right Ascension (J2000)')
ax_pa.coords[1].set_axislabel('Declination (J2000)')
fig_pa.savefig(path_join(root_dir_plot_S, "NGC1068_K_pol_ang.png"), bbox_inches="tight", dpi=300)
#
# Compute power uncertainty difference between the maps in cut
#
eta = np.where(data_S['mask'], np.abs(data_K['d_P']-data_S['d_P'])/np.sqrt(data_S['sP']**2+data_K['sP']**2)/2., np.nan)
fig_dif_p = plt.figure(num="Polarization power difference ratio")
ax_dif_p = fig_dif_p.add_subplot(111, projection=wcs)
cbar_ax_dif_p = fig_dif_p.add_axes([0.88, 0.12, 0.01, 0.75])
ax_dif_p.set_title(r"Degree of difference $\eta$ of the polarization from the 2 pipelines in the cut")
im_dif_p = ax_dif_p.imshow(eta, vmin=0., vmax=2., origin='lower', cmap='bwr_r', label=r"$\eta$ between this pipeline and Kishimoto's")
cbar_dif_p = plt.colorbar(im_dif_p, cax=cbar_ax_dif_p, label=r"$\eta = \frac{2 \left|P^K-P^S\right|}{\sqrt{{\sigma^K_P}^2+{\sigma^S_P}^2}}$")
ax_dif_p.coords[0].set_axislabel('Right Ascension (J2000)')
ax_dif_p.coords[1].set_axislabel('Declination (J2000)')
fig_dif_p.savefig(path_join(root_dir_plot_S, "NGC1068_K_pol_diff.png"), bbox_inches="tight", dpi=300)
#
# Compute angle uncertainty difference between the maps in cut
#
eta = np.where(data_S['mask'], np.abs(data_K['PA']-data_S['PA'])/np.sqrt(data_S['sPA']**2+data_K['sPA']**2)/2., np.nan)
fig_dif_pa = plt.figure(num="Polarization angle difference ratio")
ax_dif_pa = fig_dif_pa.add_subplot(111, projection=wcs)
cbar_ax_dif_pa = fig_dif_pa.add_axes([0.88, 0.12, 0.01, 0.75])
ax_dif_pa.set_title(r"Degree of difference $\eta$ of the polarization from the 2 pipelines in the cut")
im_dif_pa = ax_dif_pa.imshow(eta, vmin=0., vmax=2., origin='lower', cmap='bwr_r', label=r"$\eta$ between this pipeline and Kishimoto's")
cbar_dif_pa = plt.colorbar(im_dif_pa, cax=cbar_ax_dif_pa,
label=r"$\eta = \frac{2 \left|\theta_P^K-\theta_P^S\right|}{\sqrt{{\sigma^K_{\theta_P}}^2+{\sigma^S_{\theta_P}}^2}}$")
ax_dif_pa.coords[0].set_axislabel('Right Ascension (J2000)')
ax_dif_pa.coords[1].set_axislabel('Declination (J2000)')
fig_dif_pa.savefig(path_join(root_dir_plot_S, "NGC1068_K_polang_diff.png"), bbox_inches="tight", dpi=300)
# display both polarization maps to check consistency
# plt.rcParams.update({'font.size': 15})
fig = plt.figure(num="Polarization maps comparison", figsize=(10, 10))
ax = fig.add_subplot(111, projection=wcs)
fig.subplots_adjust(right=0.85)
cbar_ax = fig.add_axes([0.88, 0.12, 0.01, 0.75])
for d in [data_S, data_K]:
d['X'], d['Y'] = np.meshgrid(np.arange(d['I'].shape[1]), np.arange(d['I'].shape[0]))
d['xy_U'], d['xy_V'] = np.where(d['mask'], d['d_P']*np.cos(np.pi/2.+d['PA']), np.nan), np.where(d['mask'], d['d_P']*np.sin(np.pi/2.+d['PA']), np.nan)
im0 = ax.imshow(data_S['I']*convert_flux, norm=LogNorm(data_S['I'][data_S['I'] > 0].min()*convert_flux, data_S['I']
[data_S['I'] > 0].max()*convert_flux), origin='lower', cmap='gray', label=r"$I_{STOKES}$ through this pipeline")
quiv0 = ax.quiver(data_S['X'], data_S['Y'], data_S['xy_U'], data_S['xy_V'], units='xy', angles='uv', scale=0.5, scale_units='xy',
pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.2, color='b', alpha=0.75, label="PA through this pipeline")
quiv1 = ax.quiver(data_K['X'], data_K['Y'], data_K['xy_U'], data_K['xy_V'], units='xy', angles='uv', scale=0.5, scale_units='xy',
pivot='mid', headwidth=0., headlength=0., headaxislength=0., width=0.1, color='r', alpha=0.75, label="PA through Kishimoto's pipeline")
ax.set_title(r"$SNR_P \geq$ "+str(SNRi_cut)+r"$\; & \; SNR_I \geq $"+str(SNRp_cut))
# ax.coords.grid(True, color='white', ls='dotted', alpha=0.5)
ax.coords[0].set_axislabel('Right Ascension (J2000)')
ax.coords[0].set_axislabel_position('b')
ax.coords[0].set_ticklabel_position('b')
ax.coords[1].set_axislabel('Declination (J2000)')
ax.coords[1].set_axislabel_position('l')
ax.coords[1].set_ticklabel_position('l')
# ax.axis('equal')
cbar = plt.colorbar(im0, cax=cbar_ax, label=r"$F_{\lambda}$ [$ergs \cdot cm^{-2} \cdot s^{-1} \cdot \AA^{-1}$]")
ax.legend(loc='upper right')
fig.savefig(path_join(root_dir_plot_S, "NGC1068_K_comparison.png"), bbox_inches="tight", dpi=300)
# compute integrated polarization parameters on a specific cut
for d in [data_S, data_K]:
d['I_dil'] = np.sum(d['I'][d['mask']])
d['sI_dil'] = np.sqrt(np.sum(d['sI'][d['mask']]**2))
d['Q_dil'] = np.sum(d['Q'][d['mask']])
d['sQ_dil'] = np.sqrt(np.sum(d['sQ'][d['mask']]**2))
d['U_dil'] = np.sum(d['U'][d['mask']])
d['sU_dil'] = np.sqrt(np.sum(d['sU'][d['mask']]**2))
d['P_dil'] = np.sqrt(d['Q_dil']**2+d['U_dil']**2)/d['I_dil']
d['sP_dil'] = np.sqrt((d['Q_dil']**2*d['sQ_dil']**2+d['U_dil']**2*d['sU_dil']**2)/(d['Q_dil']**2+d['U_dil']**2) +
((d['Q_dil']/d['I_dil'])**2+(d['U_dil']/d['I_dil'])**2)*d['sI_dil']**2)/d['I_dil']
d['d_P_dil'] = np.sqrt(d['P_dil']**2-d['sP_dil']**2)
d['PA_dil'] = princ_angle((90./np.pi)*np.arctan2(d['U_dil'], d['Q_dil']))
d['sPA_dil'] = princ_angle((90./(np.pi*(d['Q_dil']**2+d['U_dil']**2)))*np.sqrt(d['Q_dil']**2*d['sU_dil']**2+d['U_dil']**2*d['sU_dil']**2))
print('From this pipeline :\n', "P = {0:.2f} ± {1:.2f} %\n".format(
data_S['d_P_dil']*100., data_S['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_S['PA_dil'], data_S['sPA_dil']))
print("From Kishimoto's pipeline :\n", "P = {0:.2f} ± {1:.2f} %\n".format(
data_K['d_P_dil']*100., data_K['sP_dil']*100.), "PA = {0:.2f} ± {1:.2f} °".format(data_K['PA_dil'], data_K['sPA_dil']))
# compare different types of error
print("This pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_S['sI'][data_S['mask']]/data_S['I'][data_S['mask']]), np.mean(
data_S['sQ'][data_S['mask']]/data_S['Q'][data_S['mask']]), np.mean(data_S['sU'][data_S['mask']]/data_S['U'][data_S['mask']]), np.mean(data_S['sP'][data_S['mask']]/data_S['P'][data_S['mask']])))
print("Kishimoto's pipeline : average sI/I={0:.2f} ; sQ/Q={1:.2f} ; sU/U={2:.2f} ; sP/P={3:.2f}".format(np.mean(data_K['sI'][data_S['mask']]/data_K['I'][data_S['mask']]), np.mean(
data_K['sQ'][data_S['mask']]/data_K['Q'][data_S['mask']]), np.mean(data_K['sU'][data_S['mask']]/data_K['U'][data_S['mask']]), np.mean(data_K['sP'][data_S['mask']]/data_K['P'][data_S['mask']])))
for d, i in zip(['I', 'Q', 'U', 'P', 'PA', 'sI', 'sQ', 'sU', 'sP', 'sPA'], [0, 1, 2, 5, 8, (3, 0, 0), (3, 1, 1), (3, 2, 2), 6, 9]):
data_K[d] = np.loadtxt(path_join(root_dir_K, d+'.txt'))
with fits.open(path_join(root_dir_data_S, filename_S)) as f:
if not type(i) is int:
data_S[d] = np.sqrt(f[i[0]].data[i[1], i[2]])
else:
data_S[d] = f[i].data
if i == 0:
header = f[i].header
# from Kishimoto's pipeline : IQU_dir, IQU_shift, IQU_stat, IQU_trans
# from my pipeline : raw_bg, raw_flat, raw_psf, raw_shift, raw_wav, IQU_dir
# but errors from my pipeline are propagated all along, how to compare then ?
plt.show()